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Numerical solution of partial differential equations 
 

              Numerical analysis is a branch of applied mathematics; the 

subject can be standard with a good skill in basic concepts of 

mathematics. This subject has many applications and wide uses in the 

area of applied sciences such as, physics, engineering, Biological, …ect. 

So, when any body wants to study this subject, should be to get answers, 

which do not agree with experiment or observation data. This is because 

there always has to be careful choice of the mathematical model that is to 

be used to describe a particular phenomenon. The problems of the real 

subject of P.D.Es are possible great complexity involving many physical 

effects (or other sciences) and a considerable set of non-linear equations. 

These problems can not be solved either by advanced techniques or by 

putting then on the computer. The techniques do not exist and the 

machines are neither powerful enough nor sophisticated enough (to reject 

spurious solutions). the problem only be omitting, after much careful 

thought, perhaps and special case can be dealt with analytically , and this 

will show what sort of calculation the machines must be programmed for 

more general case. After determine the mathematical model for the 

problems, should be try to solve it. For this situation, we need good 

mathematical procedure to simplified or linearized problems, which are 

non-linear or involving complex geometries, or both. Here the numerical 

techniques such as finite difference, finite elements, differential 

quadrature ,….ect;are play important role to computational of problems 

are described by a set of linear and/or non-linear equations.       

 
Important examples of the three type equations are the 

                     

equationWaveuu

equationHeatuu

equationLaplaceuu

xxtt

xxt

yyxx





 0

  

          Before derivation of finite difference formulas, which are using to 

approximation partial differential equations, we wanted to introduce 

classification of  second order linear partial differential equations 
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And, also we need to give information about u on the boundary (C ) of      

(Fig(1) 

 

- given u on C  [Dirichlet problem] 

- given 
n

u




 onC , where n the norm [Neuman problem] 

- 
n

u
u




  , where  , are given, [Mixed problem] 

 
Example 1: 

      One end of a bar ft2 long .whose sides are insulated, is kept at the 

temperature C00 ,while the other end is kept at C010 . If the initial 

temperature distribution is linear along the bar, write down the boundary 

value problem that governing the temperature in the bar. 

        The bar has the length ft2  (i.e. Ω = [0,1]), then by conservation law of 

energy ,we have  

 
                               ),()(),( 1 txuxxuKAxtxAus xxt   

 

Where the constant s is the specific heat of the material,  is the mass per 

unit volume, and 1x  is between xxandx  , K is  the thermal conductivity 

( positive constant), and A is the area of a cross section . Dividing through 

in this equation by xAs   and then letting x  approach to zero, we obtain 

the equation  
                             ),(),( txuxtxu xxt   0,20  tx  

 

Where  sK / is the thermal diffusivity of material.  

 One end kept at the temperature C00 and the other end is kept at C010  

 
  0,10),2(0),0(  ttuandtu  

 

The initial temperature distribution is linear along the bar  

 
 20,5)0,(  xxxu  

 

 Therefore, the mathematical model for this problem is  
                                          xxt uu   

                            0,10),2(0),0(  ttuandtu  

                                    20,5)0,(  xxxu      

Example 2: 

       A string is stretched between the fixed points )0,1()0,0( and  and 

released at rest from the position )sin( xAu  ,where A is a constant. Write 

 

 

R 
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down the mathematical model that governing the transverse displacement 

of a string. 

       The mathematical model for this problem is   

 
xxtt uu 2 (For derivation you can see Churchill R. 'Fourier sires and Boundary Value Problems' 

page 5 ) 
0,0),1(0),0(  ttuandtu (A string infixed at points )0,1()0,0( and  there is no 

displacement) 

 10,)sin()0,(  xxAxu  (Initial displacement, at 0t  ) 

Depending on the above information, the following is a rough summary 

of well-posed problems for second-order partial differential equations: 

 

    elliptic equation           plus boundary conditions 

    parabolic equation       plus boundary conditions with respect to space 

                                        plus initial condition with respect to time 

    hyperbolic equation  plus boundary conditions with respect to space 
  

  Finite difference methods 

     One of the greatest needs in applied mathematics is a general and 

reasonably short method of solving partial differential equations by 

numerical methods. Several methods have been proposed for meeting this 

need, but none can be called entirely satisfactory. They are all long and 

laborious. Certain types of boundary value problems can be solved by 

replacing the differential equation by the corresponding difference 

equation and then solving the latter by a process of iteration. This method 

of solving partial differential equations was devise and first used by 

Richardson (1910). It was later improved by Liebmann(1918) and further 

improved more recently by Shortley &Weller (1938).the process is slow, 

but gives good results on  boundary value problems which satisfy Laplace 

, Poisson, and several other partial differential equations. A strong point 

in its favor is that an automatic sequence-controlled calculating machine 

can do the computation.  

          A somewhat similar method is the relaxation method devised by 

Southwell. This method is shorter and more flexible than the iteration 

method, but is not adapted to automatic machine computation. In both of 

these methods the approximate solution of a partial differential equations 

with given boundary values, is found by finding the solution of the 

corresponding partial differential equation. 
        

Operators: it is a mathematical operation on an operated function. 

                   - Shifts (translation) operator )()( hxfxEf    

                   - Difference operator )()()( xfhxfxf      

                   - Inverse difference operator )()()( hxfxfxf    

                   - Intermediate operator )2/()2/()( hxfhxfxf    
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Properties of operators: 

 Linearity of operator                )()()( gEfEgfE   

 Product of operator                  fEfEEE 3  

 Sum and difference operator  )()()()( xDfxEfxfDE    

 Equality of operator                )()( 2121 xfExfEEE   

 Identity(unit) operator            )()( xfxfI   

 Null(zero) operator                0)(0 xf  

 

Exercise1:            Prove that       (a) 1 E  

                                                    (b) nn DEDE   

                                                    (c) hDeE   

Inverse operator: it is a mathematical operator that inverse the original 

operation. 

         For example; Shifts operator is )()( hxfxEf  , the inverse of it is 

                                          )()(1 hxfxfE    ))1(( 1 EE  

                                        Difference operator 1 E , the inverse of it is 

                                          11  E  

              Show that          
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Finite difference formulas: 
                  Now, the area of integration     is covering by rectangular 

meshes ),( tnxiPPij  , are called mesh points. For a function u  of a 

single variable, the familiar expression
x

xuxxu



 )()(
, is called difference 

quotient, whose limiting value is the derivative of )(xu with respect to x  

i.e.   

x

xuxxu
xu

x

xuxxu
xu

x 











)()(
)(

)()(
)( lim

0

………………...(2) 

That is mean; a difference quotient approximates the derivative, the 

approximation becoming closer as x become small. 
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Suppose we like to solve the parabolic P.D.E. 

 

 

 

 
   

Using Tayler's series expand ).( ktxu   about ),( tx  












2
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





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Using the finite difference code; ),( ni

n

i txuu   

                        n

i

n
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t

kExpu )(1




               …………………………(4) 

This is finite difference representation of the parabolic P.D.E. 

As special case; let      2
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This is the general finite difference representation of the parabolic P.D.E. 

2

2

x

u

t

u









. 

Generally, there are two standard methods:- 

uDDtxL
t

u
),,,( 2




 

2

2

2

DL
x

u

t

u
examplefor 









 



 7 

      ** An explicit methods 

      ** An implicit methods 

Definition: An explicit method is one in which one unknown values in 

the thn )1(   level are specifying in terms of known values in the thn)( level. 

 Definition: An implicit method is one in which two or more unknown 

values in the thn )1(   level are specifying in terms of known values in the 
thn)( level. 

Now, an explicit method can be reducing from the above general finite 

difference representation of the parabolic P.D.E., and may be writing as, 

 

                )2()1( 11

221 n

i

n

i

n

i

n

i

n
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n

i

n

ix

n

i uuuruuruuru 

    

                )()21( 11
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i

n

i

n

i

n

i uururu 

                                          ……………(10) 

 

          Unknown           known   

   

This expression is calling an explicit method involving four-point 

formula. 

Other an explicit form can be obtaining as, 

))(61(
12

1
))(22(

2

3
)652(

2

1
2211

21 n

i
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i

n

i

n

i
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n
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  ……(11) 

This expression is calling an explicit method involving Six-point formula. 

 An implicit formula of the parabolic P.D.E. can be deriving as follows; 

   The finite difference formula   n

i

n

i ukDExpu )( 21   
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n
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




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This equation is call implicit formula of the parabolic P.D.E. 
2
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


. It 

is suggest by O'Brien et.el , which approximate 
2

2

x

u




 in the thn )1(  time 

level instead of the thn)( level. 

Crank and Nicolson(1947) proposed a method is valid for all values of r . 

They replaced 
2

2

x

u




 by means of its finite difference representations on the 

thn )1(  time level and thn)( time level. 
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This equation is call Crank-Nicolson implicit formula of the parabolic 

P.D.E. 
2

2
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
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


. 

 

Exercise2: write down the following parabolic P.D.E. with variable 

coefficients 

      (1) 
2

2

)(
x

u
xa

t

u









        (Hint: put 2)( DxaL  ) 

      (2) ))((
x

u
xa

xt

u













 

Note: we can approximate the derivatives (first-order &second-order) by 

finite difference depend on the following definition 
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Thus, this derivative at point ),( ji  can expression as follows,   

differenceForward
x
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                                 ……………(15)   

differenceBackward
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                               ……………(16) 
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                           ……………(17)       

  From these relations the second derivative can written as follows 
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                        ……………(18)  
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We can derivation these formulas by using Taylor's theorem. Apply 

Taylor's expand to the function u  at xx    and xx  , we obtain 

 

    










2

22 ),(

!2
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x
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x
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txukxxu nini

ni
       ……… (19) 

   










2

22 ),(

!2

)(),(

!1
),(),(

x

txux

x

txux
txukxxu nini

ni
         …… (20)  

   

Use these relations to prove above formulas.    

 

 

 Discuss the truncation errors 

 

From  equation( 19) , we get  
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3
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n

i

n

i

n

i































     ……(21) 

This is the Forward finite difference scheme .it is of the first-order of x . 

Similarly, From  equation(20) , we have 

                                            )(1 xO
x

uu

x

u
n

i

n

i 







    ……………(22) 

This is the Backward finite difference scheme .it is of the first-order of 

x  

Subtracting (19) and (20), we obtain 

                                        ))((
2

211 xO
x

uu

x

u
n

i

n

i 







  …………(23) 

This is the Central finite difference scheme .it is of the second-order of 
2)( x  

Adding (19) and (20), we get 

                                 ))((
)(

2 2

2

1

2

1

2

2

xO
x

uuu

x

u
n

ii

n

i 







       ………(24) 

This is the Central finite difference scheme .it is of the second-order of 
2)( x  

 

Derivative boundary conditions 

     For solving parabolic P.D.E 
2

2

x

u

t

u









 subject to the initial and 

boundary conditions  

             10)()0,(  xforxfxu       (where )(xf is known function) 
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0
),1(

0
),0(











tforu
x

tu

tforu
x

tu

 

by using explicit method, we obtain  

                                    )()21( 11

1 n

i

n

i

n

i

n

i uururu 

   

               For   )()21(0 110

1

0

nnnn uururui 

   

Here appear problem in the computation of the recurrence relation exactly 

in the term nu 1 . One of the treatments for this problem, one can used 

central difference scheme (equation (23)) for the boundary condition 

u
x

tu




 ),0(
  gives  

                                                 nnn uxuu 011 2
 

Similarly, For )()21( 11

1 n

M

n

M

n

M

n

M uururuMi 

  , such that problem 

is appear in the term n

mu 1
,so by using  the same previous way ,we have  

                                              n

M

n

M

n

M uxuu   211  

Exercise3:  
           A bar, with ends at 0x and ax  ,with  insulated ends, has an 

initial  

           temperature distribution )()0,( xfxu   

1) Write down the boundary value problem that corresponding to the 

      physical problem. 

2) Approximate the P.D.E. resulting in part(1) by: 

      a- explicit method       b-implicit method     c-Crank-Nicolson 

method. 

Exercise4:  
Derive the following expressions: 

 1)  
)(4

1,11,11,11,1

,

2

yx

uuuu

yx

u jijijiji

ji







 
,which is second order 

mixed  

               central difference with respect to yandx . 

2) )291811(
6

1
3,2,1,,

,

 






jijijiji

ji

uuuu
yy

u
 , which is third order 

difference with respect to y . 

 

Two-dimension P.D.E. 

(1) the 2D heat equation in the ),,( tyx plane may be written as  

                                       
2

2

2

2

y

u

x

u

t

u














                           ……………(25) 
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           Here we can define the differential operator as 22

yx DDL   , thus, 

equation 

           (25) can be written as  

                                      Lu
t

u





                    …………………(26) 

          Using the finite difference code; ),,(, nji

n

ji tyxuu  , approximation of  

         equation (26) is  

                  

 

n

jiyx

n

jiyx

n

ji

y

y

x

x

n

jiyx

n

ji

n

ji

urr

urExprExp

urExprExp

uKDExpKDExp

uKLExpu

,

22

,

22

,

4

2

4

2

,

22

,

1

,

)1)(1(

))()((

)))
12

(())
12

(((

)()(

)(





















 ……..(27)  

         This is explicit scheme for 2D parabolic P.D.E. 

(2)  Using an explicit method to approximation the2D parabolic P.D.E. 

                              )),(()),((
y

u
yxb

yx

u
yxa

xt

u






















      …………(28) 

       .  

(3)Use an implicit scheme to approximation the 2D parabolic P.D.E. 

 

Explicit method: 

    Advantage         Relatively simple to set up and program 

    Disadvantage    in terms of above example, for a given tx  ,  must be  

                                less than some limit imposed by stability constraints.  

                               In some cases, t  must be very small to maintain 

                               stability; this can result in long computer running 

                               times to make  calculations over a given interval of t .  

 

Implicit method: 
    Advantage     stability can be maintained overt much large values of t , 

                          hence using considerable fewer time steps to make 

                         calculations over a given interval of t . This result in  

                         less computer time. 

 

   Disadvantage   more complicated to set up and program 

 

   Disadvantage   Since massive matrix manipulations are usually required  

                           at each time step, the computer time per time step is  

                           much larger than in the explicit approach. 

 

   Disadvantage    Since large t can be taken, the truncation error is large,  
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                          and the use of implicit methods to follow the exact 

                          transient (time variation of the independent variable) 

                          may not be as  accurate as an explicit approach. 

                          However, for a time- dependent solution in which the  

                          steady state is the desired   result, this relative time wise  

                          inaccuracy is not important.  

 

Other finite difference approximation methods: 

 

A weighted average approximation method:  

         we can introduce a weighted factor   to some finite difference 

scheme, such as Crank-Nicolson scheme to produce a more general finite 

difference approximation to 
2

2

x

u

t

u









. 

 )2)(1()2(
)(

1
,1,,1

1

,1

1

,

1

,12

,

1

, n

ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

ji
uuuuuu

xt

uu



















       ..(29) 

If  0  then explicit scheme obtain (equ.(10)) 

     1  then  fully implicit scheme obtain(equ.(12))  

     
2

1
 then Crank-Nicolson scheme obtain(equ.(14))  

In practice 10  . 

 

Alternating direction implicit method (ADIM): 

 we consider the parabolic P.D.E. 

                                  )(
2

2

2

2

y

u

x

u

t

u














                     …………..(30) 

Define over a rectangle region byandax  00 ,where  ba,,  are 

constants, ),,( tyxu  is known on the boundary of the rectangle.define the 

coordinates ),,( tyx   of mesh points as; tntyjyxix  ,,  ,where 

vearenji ,, . The implicit  Crank-Nicolson finite difference of above 

parabolic P.D.E. is  

                                  

                      





































 1

,

2

2

2

2

,

2

2

2

2
,,

)()(
2

n

ji

n

ji

n

ji

qn

ji

y

u

x

u

y

u

x

u

t

uu 
………(31)  

This scheme produces )1)(1(  NM  simultaneous equations for each time 

step.  

However, the best method to solve these simultaneous equations is  

replaced
2

2

x

u




  by implicit difference approximation and

2

2

y

u




 by explicit 

difference approximation in )2/1( n time level, as  
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                    n

jiy

n

jix

n

ji

n

ji
u

y
u

xt

uu
,

2

2

2/1

,

2

2

,

2/1

,
)(

)(
)(

)(2/




















  …………..(32) 

 These produce )1( N  equations. For next time step, replace
2

2

x

u




  by an 

explicit difference approximation and
2

2

y

u




 by implicit difference 

approximation. These produce )1( M  equations in )1( M  unknowns. To 

obtain the solution at time step )1( n  

                1

,

2

2

2/1

,

2

2

2/1

,

1

,
)(

)(
)(

)(2/














n

jiy

n

jix

n

ji

n

ji
u

y
u

xt

uu






     …………(33) 

 

Elliptic P.D.E. 

   Let the problem of determining the steady –state heat distribution in a 

thin square metal plate with dimensions 0.5m by 0.5m .two adjacent 

boundaries are held at Co0 ,and the heat on the other boundaries increases 

linearly from Co0 at one corner to Co100 where the sides meet. If we place 

the sides with the zero boundary conditions along the x  and y axes, 

the problem is expressed as 

                                               0
2

2

2

2











y

u

x

u
                         ………….(34)                

for  5.00,5.00),(),(  yxyxRyx , with the boundary conditions 

  yyuxxuxuyu 200),5.0(,200)5.0,(,0)0,(,0),0(  . 

If 4 NM , the problem has 55 grid and the finite difference equation  

 

                       04 1,1,,1,1,   jijijijiji uuuuu             ……………(35) 

For 3,2,13,2,1  jandi . 

Expressing this in terms of relabeled interior grid points 921 ,, ppp   

corresponding to 921 ,, uuu   implies that the equations at the points ip  

are 

                     

4,33,43,02,13,3

4,22,23,13,33,2

4,13,02,13,23,1

4:3

4:2

4:1

,3

uuuuui

uuuuui

uuuuui

jfor









     …………(36a) 

 

                  

2,41,33,33,232

1,23,22,12,32,2

2,01,13,12,22,1

4:3

04:2

4:1

,2

uuuuui

uuuuui

uuuuui

jfor









     …………(36b) 
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1,40,32,31,21,3

0,22,21,11,31,2

0,11,02,11,21,1

4:3

4:2

4:1

,1

uuuuui

uuuuui

uuuuui

jfor









                …………(36d) 

 

Where the right sides of the equations are obtained from the boundary 

conditions. In fact, the boundary conditions imply that 
   03,02,01,00,30,20,1  uuuuuu     

755025 3,44,32,44,21,44,1  uuuuuu  

The linear system associated with this problem has the matrix form 

                                           BAU                ………………………(37)  

 where 

              































































































































25

0

0

50

0

0

150

50

25

,,

410100000

141010000

014001000

100410100

10141010

1014001

101410

10141

000001014

1,3

1,2

1,1

2,3

2,2

2,1

3,3

3,2

3,1

B

u

u

u

u

u

u

u

u

u

UA  

 

Exercise 5: Write the linear system of algebraic equations associated 

with the problem of exercise 3 in the matrix form. 

 

Note: the linear system of algebraic equations that is resulting from 

approximation P.D.Es by finite difference method (finite difference 

equations), needed good procedure to solve it. There are two procedures 

to achieve this aim, the first is called direct methods( such as, Gauss 

elimination , LU factorization,……) and the second is called iterative 

method (such as;Jacobi iterative, Gauss-seidel iterative, successive over 

relaxation(SOR) iterative ,……..). For example, system (37) is solving by 

using Gauss-siedel method and the results are; 

 

 
ji,  (1,3) (2,3) (3,3) (1,2) (2,2) (3,2) (1,1) (2,1) (3,1) 

jiu ,  18.75 37.50 56.25 12.50 25.00 37.50 6.25 12.50 18.75 

xyyxu 400),(   18.75 37.50 56.25 12.50 25.00 37.50 6.25 12.50 18.75 

 

This mean the truncation error is zero at each step. 



 15 

Accuracy of the finite difference equation of the numerical scheme: 

                   Accuracy of finite difference schemes can be determined by 

many ways such as , theoretically through the  order of error  of  the finite 

difference equation and experimentally through the measurements of 

errors( 2L  norm, ….). 

 There is Richardson's approach to limit the order of accuracy of the finite 

difference equation. In this method, we need to know the truncation error 

of the difference equation. 

 

    Let u   represents the solution of differential equation 

And U   represents the solution of finite difference equation 

   The discretization error is  

               422 DhCkBhAkUu    …………(38) 

 If we use 11 , hk  as mesh size to produce 1U , and 22 , hk  as mesh size to 

produce 2U  ,then 

              4

1

2

1

2

111 DhCkBhAkUu   ………(39) 

 

             4

2

2

2

2

222 DhCkBhAkUu       ……(40) 

 

Subtracting these two equations, we obtain 

                          
1

2

12

2

21
2

2

11

2

22

1

2

2

)(
1

k

hkhk
AUhUh

hh
u





     

If we neglect the term involving A  , then  

                    )(
1

2

2

11

2

22

1

2

2

UhUh
hh

u 


 ,        if 2121 kkandhh  , then  

                   )4(
3

1
21 UUu   the error is )( 4hO  

Definition: Uu   is the discitization error which be reduced by 

                   decreasing kandh . 

 

Definition: Let 0)(, UF ji represent the finite difference equation at thji ),(   

                  mesh point, then )(, UF ji   is called local truncation error. 

 

Definition: If N is a numerical solution of finite difference equation that 

                  is produce from each calculation is carried up to a finite 

                 number of decimal places. Thus, NU   is the global rounding  

                 error. 

 

      Total error= discitization error+ global rounding error jiji Nu ,,  . 
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        High accurate formula (high order) for elliptic P.D.E. can be derived 

by using more terms from the operators series. These formulas are useful 

when the boundary in highly irregular. 

    For example: An elliptic P.D.E.(equation(34)) can be approximation by 

central difference operators as; 

                                   0)(
)(

1
)(

)(

1
,

2

2,

2

2






jiyjix u

y
u

x
  

For high accuracy, using the definition given by equation (7) 

 
                              

0
12

11

12

11
.

42

2.

42

2


















 jiyyjixx u

h
u

h
  

 

Now, for the first two terms, we have 

                         0
12

1

12

1
,

42

,

42 
















 jiyyjixx uu        ……………………..(41)  

The first term 

   

                      

   

jijijijiji

jijijixjijijijixx

uuuuu

uuuuuuu

,2,2,1,,1

,1,,1

2

,1,,1,

42

12

1

12

1

3

4

2

5

3

4

.

.

.

2
12

1
2

12

1















 

 

 

Similarly for the second term   

                          2,2,1,,1,,

42

12

1

12

1

3

4

2

5

3

4

12

1
 








 jijijijijijiyy uuuuuu  

Now, equation (41) becomes  
                                 

   








  2,2,,2,21,1,,1,1,
12

1

3

4

5

1
jijijijijijijijiji uuuuuuuuu    ….(42) 

  This finite difference equation is called nine-point formula.  

 

Exercise 6:  

1) Determine the order of truncation error of equation(42) . 

2) Show that the truncation error of the Laplace equation is 










 )(

12 4

4

4

42

y

u

x

uh
TE    

 



 17 

Stability, Convergence and consistency: 

       After presented, how to approximate the derivatives that including in 

P.D.E. to generate the finite difference schemes for its numerical 

solution? Should be discussing the follow; 

 Verity that these schemes are good approximation to the P.D.E. 

     ( consistent). 

 Verify that the schemes are stable or no. 

 Show that the numerical solution converges to the solution of 

P.D.E. 

Let us to define  

                                    bUF kh )(,
        ………………..(43) 

  Is a finite scheme and, 

                                   buF                 ………………..(45) 

is a partial differential equation. Now we need to light up some 

definition related to the property of finite difference schemes, as 

follows; 

Definition: we say that a finite difference scheme (43) is consistent with 

                   P.D.E.(45) of order ),( hk  , if for any smooth function  

                                            ),(,

sr

hk hkOUFFu           ……………(46) 

                To verify consistency expand u  in Taylor series and make sure  

                equation (46) holds. 

 

Example: If cu
x

u

t

u










2

2

approximate by explicit finite difference 

method, then 

(1) show that the finite difference equation given as 
n

ix

n

i urcrhu )1( 2221   

     xhandtkwhichin
h

k
rwhere  ,,

2
  

(2) Show that difference equation and P.D.E. are consistent 

with the truncation error  

             ),(
122

2

4

42

2

2

hkO
x

uh

t

uk
TE 









  

Solution: using forward finite difference approximation (15) for the first  

                order time derivative, and central finite difference 

               approximation(18)for the second order spatial derivative, 

               finite difference  equation so obtained is 

                           n

i

n

i

n

i

n

i

n

i

n

cu
x

uuu

t

uu
i 















2

11

1

)(

2
1  ………………(43) 

Rearrangement this equation, we have 
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                     n

i
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i
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i
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n tcuuuu
x
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uu

i





 

 )2(
)(

112

1     ………………(44) 

If we put 
2)( x

t
r




   and using the definition of the central difference 

operator, then the finit difference equation becomes          

                                          n

ix

n urxcru
i

))(1( 2221     

Expand each term in equation(44) ,we obtain  
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
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


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






            

Rearrangement this equation to obtain 
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
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This equation of order ),( 2hkO . 

Exercise7: Approximation P.D.E. in above example by implicit finite  

                 difference method ,then find its order of error 

 

Definition: For a function ...),.........,,,,,(......... 21012 vvvvvv  on the grid  

                  with step size x : 

                    
2

1

2









 



m

mvxvvnorm  

                 And for a function f on the real time  

                   
2

1

2
)(





 




dxxfffnorm  

Definition: a finite one-step difference scheme (43) for a first order  

                  P.D.E. is stable if there exist  number 00 00  handk  such  

                  that for any for any 0T there exist a constant  TC  such that  

                               0vCv T

n        , For     00 0,0,0 kkhhTnk   

Definition: The initial value problem for the first order P.D.E. is well- 

                   posed, if for any time 0T , there exist TC such that any 

                   solution ),( txu satisfies 

                                            )0,(),( xuCtxu T  for Tt 0  

Definition: A one-step finite difference scheme approximating a P.D.E. is  
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                  convergent if for any  solution to the P.D.E., ),( txu is approach  

                  to numerical solution ),( mknhu  as 0, kh  

Note:    A consistent finite difference scheme for a P.D.E. for which the 

             initial value problem well posed is convergent if it is stable.  

Definition: Fourier transformation and inversion formula for u  defined  

                   in region given as; 

                             

dppuexu

dxxuepu

ipx

ipx

)(ˆ
2

1
)(

;)(
2

1
)(ˆ
























 

  For a grid function ...),.........,,,,,(......... 21012 vvvvvv  with grid spacing x  

                           













dueu

xueu

h

h

ipx

m

m

imh

)(ˆ
2

1

;
2

1
)(ˆ

/

/

















 

          From the Parseval condition 

                                 
muu

puxu





)(ˆ

,)(ˆ)(


    where 




duu

h

h
/

/

22
)(ˆ)(ˆ  

 

Convergent:  

           The system of algebraic equations that is resulting from recurrence 

relation of finite difference schemes, written as 

                                             cuMu nn 
1     ……………….. (45) 

Let nû  be the solution of the finite difference system (45) with a 

perturbed initial conditions; 

                                           cuMu nn 
 ˆˆ 1       ……………….. (46) 

           Let                 nn uu
̂

  

From (45) and(46) ,we have 

                         )ˆ(ˆ )()()1()1( nnnn uuMuu


   

                  )0()()()()1( 
 nnnn MM     …………………..(47) 

      If 0nM , as n ,then 0)( n


  (i.e. the system is convergent). 

 

Definition: if 0nM , as n ,then M  is convergent. 

 

Definition: Spectrum radius i
i

M  max)(  , where i are the eigenvalues  

                  of the  matrix M . 

Theorem: If M is the matrix coefficients and )(M is spectrum radius, 

                  then )(MM  . 

    Proof :   Suppose 1max)(   i
i

M , then 

                         uuMuuM


11    ,      0u

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                                   uuM


1                       ……………………(48 ) 

Also,                          uMuM


                    …………………….(49 ) 

From equations (48)&(49), we get:  

                                uuM


1   

Since 0u


  0 u


 , this implies that   

                                )(1 MM                                                                      

 

 

Theorem:  If 1M , then M  is convergent. 

       

    Proof:       

                   )1()(  nn MMM  

                    
)()1( nn MMM     ,             Prove that! 

From these relations, we get  

                       
)()( nn MM   

If 1M , then  nasM
n

,0
)(

, this implies that  

      

0M , as n , from the previous definition ,we have 

                   M  is convergent  

 

Corollary:  If  1M   for any norm then the iterative process for 

                   nn uMu ˆˆ 1 
  will converge for every )0(u . 

Note: it is possible that for some norm that 1M , but M  is still 

convergent. 

 

Theorem: If 1)( M , then  M  is not convergent. 

 Proof: 

           Suppose 1max)(   i
i

M , then 

                          uuM


1  , where 0,01  u


  

From(47***), we have  

                            )0()()( 
 nn M  

Let )0(


u , then  

                      uuMM


1

)0()1(     

                 uuM nnn  )(

1

)()(     

Since 0,01  u


 , then  

          u
nn  )(

1

)(    ,dose not approach to zero, as n , thus  

              M  is not convergent 
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Theorem: Necessary and sufficient condition for 0M  be convergent iff 

1)( M . 

 

Stability of finite difference: the numerical calculation using finite 

difference formula are done in digital calculators which have round off 

error, each point calculated there will be error in the finite result which 

differs from the exact finite difference formula. For stable solution, there 

should be no large accumulation of round off error. 

 

Von-Neumann (Fourier-series) method:  

          In each, mesh point ),( ni there will be round off error n

ie , the sum of 

which  

     error the grid points could represent as,  

         

.tan,,

),(

,

1

,

tsconsphasearbitraryareeeA

etxE

M

ni

tx

i

M

ni

n

i









 

          where, te : growth factor of error with time(amplification factor)  

                        
M

ni

tnxi

i eeAtxE
,

)()(1),(         

If suppose  te  is an arbitrary real or complex number, where 

)( t =constant, then  

                                
M

ni

nxi

ieAtxE
,

)()(1),(      

 If 1 , then )(n will increase with time(i.e. instability), therefore , the 

require equation to gives the  stability condition is  

                                 1                           …………..……….(50) 

Simplification: The propagation of error with time is taken for one mesh 

point rather than the whole mesh 

                )()(1 nxin

i e       (error for single mesh point)   …..…..(51) 

 

Theorem: The error term in each mesh point n

i  satisfies the same finite 

difference formula used to calculate value of u at that mesh point. 

 

    Proof:  For the explicit finite difference formula (equation (10)) 
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)()21(

)()21(

)()21(

11

1

021

1

1

11

1

n

M

n

M

n

M

n

nnnn

n

i

n

i

n

i

n

uururu

uururu

uururu

M

i



























 

 

                     )0()()1( uAu nn 
      

    where A  is ( MM  ) bounded matrix, )0(u


is initial value at 0t . 

Suppose we introduce an error n

i  in initial calculation, we get 

                                )0()()1( 
 nn A                     (Prove that) 

Example: Find the stability condition for the explicit finite difference 

formula. 

                 The explicit finite difference formula is  

                              )()21( 11

1 n

i

n

i

n

i

n uururu
i 

   

From the above theorem, we get  

                             )()21( 11

1 n

i

n

i

n

i

n rr
i 

    

Apply von Neumann analysis (equation (51)) for each term in above 

equation, we obtain 

         )()1(1)1(1)()(1)1()(1 )()21( nxixinxinxi eerere      

Divided by )()(1 nxie   , we have  

                    
xrr

eerr xx



 



 

cos2)21(

)()21( 11

 

                   
2

sin41 2 x
r





  

From the stability condition ( 50), we have 1
2

sin41 2 



x

r


 ,and this 

implies to 
2

1
0  r (give the details to illustrate that) 

Exercise8: Find the stability condition for an explicit finite difference  

                 formula that is used to approximation  
yyxxt uuu  . 

Exercise9: Show that an explicit finite difference formula for  

                   approximation  is stable for
6

1
0  r . 

Exercise10: Consider the finite difference equation   

                   )2()2(
2

2 1

1

11

1

1

1

11

1

2
11 















  n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i uuuuuu
r

uuu  

              (a) Find P.D.E. that is consistent with FDE   

              (b) Find the stability condition. 

Exercise11: (1) Approximate 0 xxxt uvuu   by ; 

     (a) Explicit method   (b) Implicit method   (c) Crank-Nicolson method 
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                (2) Find the truncation error and stability regions for all above 

                     finite difference methods. 

(3) Approximating the first derivative in the P.D.E (part 1), by 

using the weight at two time levels, then, find the  

      truncation error and  stability condition. 

 

 Matrix stability analysis:  

             Assuming periodic initial data and neglecting the boundary 

conditions, we have used the von-Neumann method to determine the 

stability of the difference schemes. We now apply the matrix method, 

which automatically takes into account the boundary conditions of the 

problem, to difference schemes for the stability analysis.  The two level 

difference scheme may be written as, 

           

                         nnn buAuA  )(

1

)1(

0


,       ………………………(52) 

 

where nb  contains boundary conditions and 00 A . For 0A , the 

difference scheme(52) will be an explicit scheme otherwise an implicit 

scheme. We now assume that an error is introduced by round-off  or some 

other source in to the solution nu


 and call it nu * , then  

 

                          nnn buAuA  )*(

1

)1*(

0


         ……………………..(53) 

 

Subtracting equation(52) from equation(53), we get 

            

                             )*(

1

)1*(

0

nn AA 


            …………………(54) 

 

 ,where )()*()*( nnn uu


 is the numerical vector error. In the stability 

analysis by the matrix method, we determine the condition under which 

the value of the numerical error vector )()*()*( nnn uu


 , where 

 denotes a suitable norm, remains bounded as n  increases indefinitely, 

with k  remaining fixed. 

       The equation (54) can be written in the form  

                                            )*()1*( nn P


  

  where 
1

1

0 AAP   

        It is simple to verify that )0*()1()1*( 
   nn P  

Thus the stability condition in the matrix method depends on the 

determination of a suitable estimate for P . When P is symmetric or 

similar to a symmetric matrix then 
2

P  is given by the spectral radius of 

P . Now, if the eigenvalues i  of P  are distinct and the eigenvectors are 
)(iV  , we can expand the vector 
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                                       





1

1

)()0*(
M

i

i

iVC


  

Then, we have  

                                  




 
1

1

)()1()1*(
M

i

in

ii

n VC 


 

Moreover, for the stability of difference scheme (52) we required each 

1i  for all i . 

Hence, we get the result that error will not increase exponentially with n  

provided the eigenvalue with largest modulus has a modulus less than or 

equal one or   

                         1max
2

 i
i

P          

It is easy to see that the eigenvalues are the zeros of the characteristic 

equation  

                                         001  AA     

For the explicit method, we have  

 
                                   01 , ArCA   

The eigenvalues and eigenvectors of C  are giving by  

 

                    11,
2

sin4 2  Mi
M

i
i


                  Prove that! 

                    






 


M

iM

M

i

M

i

M

i
V i  )1(

sin
3

sin
2

sinsin)(  

 

It follows that the eigenvalues of rC are  

                   11,
2

sin41 2  Mi
M

i
i


   

Therefore, the condition for the stability of the explicit method is  

                         1
2

sin411 2 



x

r


 

Hence, 
2

1
0  r .  The result obtain, which is identical with that obtained 

by application of the von-Neumann method. 

 

Exercise12:  Use this method to determine the stability of the difference 

                 equation that resulting in the previous exercise. 

 

Gersschgorins theorem: The largest of the moduli of the eigenvalues of  

          a square matrix A  can not exceed the largest sum of the moduli  of  

          the elements along any row or any column. 

                         columnanyorrowanyofsum  
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Brours theorem: Let 
iP  be the sum of the moduli of the elements along  

the thi row excluding the diagonal elements 
iia . Then each eigenvalue of 

A  lies inside or on the boundary of at least one of the circles  

 

              
iii Pa   , where centeraradiusP iii  , . 

 

For example ,from Crank-Nicolson formula ,we have  

 

                                 )()1( )4( nn uBuB


                   ……………….(55) 

                               )(1)1( )4( nn uBu


   

 

Where,   








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
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
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rrr

rrr

rrr
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     If the eigenvalue of matrix B is  , then for the system to be stable  

11
4




,for the matrix B : rarrrP iii
i

22,2max   the Brours 

theorem leads to r422   , give more details about this application. 

Exercise13: Then show that the equations (55) are unconditionally stable 

                    for 2 . 

 

 Nonlinear parabolic equation: 

                    The coefficients of the unknowns are functions of the 

solution .we may solve these equations iteratively after being linearized 

in some way. 

 

Richtmyer's linearization method:  

Consider the P.D.E.  

                                         2,
2

2










m

x

u

t

u m

         

Implicit weighted average difference scheme:- 

         m

nix

m
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uu
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2
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2

,1,
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
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          (*) 
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Now, for simplicity we can write this equation as 
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Substituting in (*), we obtain 
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Using the definition of the operator
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Which give the set of linear equations for the iw (when 2m  ) 
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Exercise: use the Rrichtmyer's method to solve (*) with 3m . 
 

Newton's method:  By Taylor's expansion  
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If )( 1nxf  is the solution of the equation 0)( xf , then     
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iV  Known approximation to iu , thus  

                                                          iii Vu   

 The nonlinear equation can be expressed as  
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Example:  solve (*) by using Newton linearization method. 

               By Crank-Nicolson method with 2m , we can approximate equation (*) as 
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  Exercise: Write down the set of linear equations for i  in matrix form  
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Irregular boundaries: 

     When the boundary is curved and intersects the rectangular mesh at points. That 
are not mesh point, then we cannot use the same formula, which we usually use:- 

We want to find the finite difference approximations to the derivatives at a point such 

as O close to the boundary curves figure . 

Let the mesh be square and u   is known on the curve and  

Taylor series for u  at point O can be written as follows 
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In the same ways approximate 
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
and 
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Exercise: Approximate the elliptic equation   16 yyxx uu . 

 

Exercise 18: if the group of five points whose spacing is non-uniform 

31  handh  along x axis, 42  kandk  along y axis, arranged as in the 

figure: 

 

 

 

 

 

 

 

 

 

(1) write the finite difference approximation for 
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x

u
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
 at point 

op by(FDS,BDS,and CDS) 

(2) show that the approximation formula of  

      0),(2  yxu ,can be written as 
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Note: we represent ),( jio yxuu  , ),( 11 ji yhxuu  , ),( 33 ji yhxuu  ,   

                               ),( 22 kyxuu ji  , and ),( 44 kyxuu ji  . 

 

 

Differential quadrature method  
 Introduction:  

         In addition to finite difference method, finite elements method and 

finite volume method there is an efficient discretization technique to 

obtain accurate numerical solutions. In this technique using a 

considerably small number of grid points(different point with FDM and 

FEM),Bellman and his workers (1971, 1972) introduce the method of 

differential quadrature(DQ) where a partial derivative of a function with 

respect to a coordinate direction is expressed as a linear weighted sum of 

all the functional values at mesh points along that direction.The DQ 

method was initiated from the idea of the integral quadrature(IQ).the key 

to DQ is to determine the weighting coefficients for the discretization of a 

derivative of any order . 

    Bellman et al (1972) use Legendre polynomial to determine the 

weighting coefficients of the first –order derivative, Civan(1989) 

improved Bellman approach to determine the weighting 

coefficients,Quan and Zhang(1989) applied Lagrange interpolated 

polynomials as test functions,so on.  

   

Concepts and conclusions in DQ: 

       Differential quadrature method is a numerical method for solving 

differential equations. It is differs from finite difference method and finite 

elements method. The derivative along a direction is described into 

weighting linear combination of functional values at the grid points in 

differential quadrature method. Because all the information of functional 

values at the grid points is used in differential quadrature method, it has 

higher accuracy. 

         For convenience, we assumed that the function )(xu is sufficiently 

smooth in the interval ]1,0[ , shown in figure (1).     
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                            Figure 1- functions u over interval  

The integral 
b

a

dxxu )(  represents the area under curve )(xu .Thus evaluating 

the integral is equivalent to the approximation of the area. In general, the 

integral can be approximated by  
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2211)( …………..(64) 

Where, nwww ,,, 21  are the weighting coefficients, nuuu ,,, 21  are the 

functional values at the discrete points bxxxa n  ,,, 21 .equation(64) 

is called integral quadrature, which uses all the functional values in the 

whole integral domain to approximate an integral over a finite interval. 

One of these types of integral Trapezoidal rule,  Simpson's rule. 

     By introducing some grids points bxxxa N  .....21  in the 

computational domain, Figure (2). The interval ]1,0[  is divided into sub-

intervals.  

 

                                            

                                                                                      

                           Figure 2- Computational domain stencils. 

Assuming that the ku  is a value of function )(xu  at  kxx   , then the first 

and second derivatives of )(xu  at the grid points ix  is approximated by a 

linear combination of all functional value as follows; 
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where )1(

ikC  and )2(

ikC are the weighting coefficients, and N  is the number 

of grid points in the whole domain. Here the weighting coefficients are 

different at different location points of
ix . Equations (65) and (66) are 

called differential quadrature. In the application of the differential 

quadrature formulae (65) and (66), the choice of grid points and the 

determination of the weighting coefficients are two key factors. Once the 

grid points are given the weighting coefficients can be determined by 

using a set of test functions. There are many kinds of test functions that 

can be used. For example, striz et al (1995) and Shu and xue (1997) used 

Harmonic function, Shu (1999) used Fourier series expansion, and Guo 

and Zhong (2004) used the spline function. The polynomial test 

functions for determining the weighting coefficients are simply reviewed 

below. 

Determination of the weighting coefficients 

The calculation of the differential quadrature coefficients can be 

accomplished by several methods. In most of these methods, test 

functions Nlxf l ,....,2,1),(  , can be chosen such that: 

                    )()(
1

xfxu l
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      …………………………………….. (67) 

 

where, l are constants to be determined. However, if the differential 

quadrature coefficients )1(

ikC  and )2(

ikC  are chosen such that the equations 

are represented as; 
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A relationship between first- and second- order coefficients can be 

obtained as: 

 

      


N

k klmk

N

m im

N

k klik

N

m imik xfCCxfCCxf
1

)1(

1

)1(

1

)1(

1

)1( )()()(  …………… (70) 

Thus, 
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in matrix notation:  
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Equation (71) implies that the values of )2(

ikC  can be determined by two 

alternative (but equivalent) procedures, i.e. they can be obtained by 

directly solving equation (69) or by squaring the first –order matrix 

  .)1(C One approach for calculating the entries of  )1(C  and  )2(C ( 

Mingle, 1977; Civan and Sliepcevich, 1984; Naadimuthu et al, 1984; 

Bellman and Roth, 1986) is to use the test functions: 

               Nlxxf l

l ,....,2,1,)( 1    …………………………………….. (72) 

 If the polynomials are taken as the test functions, the weighting 

coefficients ( )1(

ikC  and )2(

ikC ) satisfy the following linear systems 
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Here  V is called Vandrmonde matrix, which is not singular and  
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Although the weighting coefficients can be determined by solving the 

linear system (37), the matrix V is highly –ill conditioned as N  is large. 

In order to overcome this difficulty the Legendre interpolation 

polynomial are used by Bellman et al (1972).the formulations of the 

weighting coefficients are givens as follows 
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where )(xLN and )()1( xLN
 are the Legendre  polynomial of degree N and its 

first order derivative respectively.  

 

Although we can determine the weighting coefficients for the second 

order derivatives by solving a system (74), the matrices are also highly-

ill-conditioned. By using the Lagrange interpolation polynomials as the 

test function the weighting coefficients of second order derivatives are 

given by Quan and Chang as follows 
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The recurrence formula to compute the weighting coefficients for mth  

order derivatives are given by Shu’s as follows 
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In similarly way with equation (71), a relationship between first- and 

high- order coefficients can be obtained,  

 

          ,)1()1()1()1()( CCCCC mmm    1,.....,3,2  Nm    ………. (80) 

 

This equation indicates that the weighting coefficients for the high order 

derivative can be computed by the matrix multiplication of the weighting 

coefficients of the first order derivative. However, this equation is simple 

and involves more arithmetic operations as compared to equations (78 

and 79). We noted that the calculation of weighting coefficient by 

equation (80) involves N  multiplications and ( 1N ) additions, i.e., a 

total of ( 12 N ) arithmetic operations. Recurrence relationship (78) only 

involves two multiplications, one division, and one subtraction, i.e. a total 

of four arithmetic operations for calculation of each off-diagonal 

weighting coefficient, which is independent of the number of grid 

points N . The calculation of each diagonal weighting coefficient from 

equation (79) involves ( 1N ) subtractions. Thus, the number of 

arithmetic operations for equation (78) and equation (79) is substantially 

smaller than what is in equation (80). 

 

 Sample of typical grid distributions 

       Because the described equations obtained by using differential 

quadrature method are equivalent to one obtained by using quasi-

spectrum method, the choice of grid points have a great effect upon 

accuracy of results. There are two kinds of methods for choosing the 

mesh points. 

The uniform grid points are used in the first kind as follows:   

Type (I): By a uniform grid, we mean that the grid has the same sizes. 

Thus by 

                 setting    .,.........1112 ectxxxxxxx NNii    
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               The coordinates of the grid points are chosen as  

                                    
1

1
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i
abxi          for  Ni ,.....,2,1  and  baxi , . 

The zeros of orthogonal polynomials such as Chebyshev polynomials are 

taken as grid points in the second kind as follows: 

Type (II) : For this kind, the coordinates of the grid points are chosen as  
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     In this field, there are some contribution studies about the effect of 

grid spacing distribution on the numerical results that were obtained by 

DQ method. Quan and Chang (1989) compared numerically the 

performances of the often-used non-uniform meshes and concluded that 

the grid points originated from the Chebyshev polynomials of the first 

kind is optimum in all cases examined. Bert and Malik (1996) indicated 

an important fact that the preferred type of grid points changes with 

problems of interest and recommended the use of Chebyshev-Gauss-

Lobatto grid for structural mechanics computations. Maradi and Taheri 

(1998) also investigated the effect of various spacing schemes on the 

accuracy of DQ results for buckling application of composites. They 

provided insights into the influence of a number of sampling points in 

conjunctions with various spacing schemes.  Chen (1997) and Bert and 

malik (1996) have provided sensible explanations why a certain type of 

grid points is superior to the others in the computation of their problems. 

The details of properties of DQ weighting coefficient matrices for the 

determination and rank are given by Shu (2000), and we note from this 

reference that these properties can be derived from the matrices properties 

in algebraic subject. 
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Exercise:  if weighting coefficients are desired for a range 10  x , then 

calculate the weighting coefficients matrices )1(

ikC  and )2(

ikC  for 5,4,3N  

grid points divided the above range. 

 

 Numerical methods to solve DQ resultant equations 

      It is very important to make simple review about the solution 

techniques, which are used to update the DQ resultant for the differential 

equations. In most applications of the DQ method to engineering and 

physics problems, which are governed by the partial differential 

equations, considering the second –order partial differential equation as 

follows: 
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In general, Equation (81) should be specified with proper initial and 

boundary conditions for the solution to a specific problem. By DQ 

method at all interior points of whole domain, the original problem, 

which is defined in equation (81) can be reduced 

to a set of N ordinary differential equations(ODEs) as 
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xtdu
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 for Ni ,.....,2,1 .(82)  

When 0
),(






t

xtu i , we can be able to obtain a system of linear algebraic 

equations. The solution of partial differential equations may not be 

possible to express in closed-form. Therefore, this solution function can 

be approximated by polynomial approximation. Rearranging equation 

(82) to obtain a set of ordinary differential equations as; 

                                   
 

   GuL
dt

ud
dq    ……………………………. ( 83) 

where  u is a vector representing a set of  unknown functional values at 

all interior points,  uLdq  is a vector resulting from DQ discretization,  G  

is a vector arising from the given initial and boundary conditions. For 
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time-dependent problems, equation (83) constitutes standard form 

ordinary differential equations. The time derivative can be approximated 

by explicit or implicit low order finite difference scheme. From equation 

(83), we can obtain a system of algebraic equations in the form 

                                 GuH     …………………………………… (84) 

where  u is a vector of unknown functional values at all the interior grid 

points given by  

          rT

MNNNMM uuuuuuuuuu ,,.....,,,.......,,.....,,,,.....,, 1,13,12,11,33,32,31,23,22,2   

and  G  is a known vector given by  

      rT

MNNNMM GGGGGGGGGG ,,.....,,,.......,,.....,,,,.....,, 1,13,12,11,33,32,31,23,22,2   

The dimension of the matrix  H  is ( 2N )( 2M ) by ( 2N )( 2M ). 

Equation (84) can be written alternatively as 

 

                    GDuuC      ……………………………………  ( 85 ) 

 

this equation is called Lyapunov matrix form and    DC , are matrices of 

weighting coefficients for the first and the second-order derivatives have 

the dimension ( 2N )( 2N ),( 2M )( 2M ) respectively. One can see 

that the dimensions of  C  and  D are very small compared with the 

dimensions of  H . To solve this system that is discritized by DQ method, 

one can adopt direct method or iterative method. To solve the ordinary 

differential equations that are given in equation (83 or 84), there are 

different explicit numerical schemes that are used to discritize these 

equations and compute the results, for example: Euler forward explicit 

scheme; this is the first order scheme given by   

                          nnn ftuu 1    …………………………………. (86) 

 

The solution techniques that we thought could be possibly used to solve 

the algebraic equations that are because of employing DQ method in 

governing equations are divided into two parts. The first part is named 

direct methods, and the second one is iterative methods. 
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 Direct methods  

     To solve algebraic equations included in equation (84), there are 

many standard methods, amongst of them, Gaussian elimination method, 

LU decomposition approach are used extensively. The details of these 

methods can be found in textbook of numerical analysis. These methods 

are very efficient when the dimension of the matrix is not large. However, 

when the number of grid points increases the dimension of the matrix will 

increase accordingly. Hence the problem of virtual storage will become 

critical;  

 

furthermore, the DQ discretization matrix tends to become ill-conditioned 

when the mesh size is large. This would lead to difficulties in obtaining 

the solution or even worse, reduce the accuracy of the solutions. The 

drawbacks of direct methods can be eliminated by using iterative 

methods. Some of these iterative methods have been used to solve the 

system of algebraic equations given in form of equation (84). 

 

 Iterative methods  

       If the matrix  H  in equation (84) is composed of two matrices  A  

and  P , then we can write it as  

                       H =  A +  P    …………………………………… (87) 

 

by rewriting equation (84) in terms of matrices  A  and  P , we obtain 

           

                             uPGuA   ……………………………… (88) 

 

The iterative expression for equation (88) can be written as 

 

                                  nnnn uAuPGuuA  1   …………... (89) 

 



 39 

where n  represents iterative level and the right side sometimes is called 

the vector of the residuals. In practical applications, a relaxation factor   

is introduced on the right hand side of equation (89), and the final 

iteration expression becomes 

 

 

                  nnn RAuu 
 11       …………………………… (90) 

 

such that 

 

                                     nn uHGR   

 

Equation (90) is a general iterative expression for equation (84). By using 

different forms of  A , we can obtain different iterative expressions for 

equation (84). For the  

stability and convergence of iterative method the reader may consult the 

textbooks Smith (1978) and Rao (2002).  

 

Successive over-relaxation (SOR) iteration method: SOR iteration is 

used to improve the convergence speed of Jacobi method. It is noted that 

SOR is a point iteration method. The value of 1n

iu  can be evaluated, when 

the values of 1,.....,2,1,1  ikun

k
 is calculated. These new values at the 

iteration level ( 1n ) can then be used to compute the residuals. The 

residuals of SOR iteration are computed from 

                                            

                                         n

UD

n

L

n uHHuHGR )(1    

 

where  LH  is the lower triangular matrix with diagonal elements being 

zero,  UH  is the upper triangular matrix with  diagonal  elements  being  

zero, and   DH   is  the  diagonal matrix with elements being the diagonal 

elements of  H . It is noted that the elements of 
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 LH ,  UH , and  DH   are equal to those of  H  at the corresponding 

positions, that is 

 

                                         H = LH +  UH + DH  

 

The iterative expression of SOR method is the same as the following 

equation 
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iR  in the SOR method can be expressed as 
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SOR iterative methods for the Lyapunov system (2.20) to update the 

solution can be write as 
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with the residuals relation in the form 

           

                        )()( 11

UD

n

L

nn

UD

n

L

n DDuDuuCCuCGR   

 

where the matrices C’s and D’s are having the same defined matrices of 

H’s, which are mentioned above.  

Gauss-seidel iteration method: it is special case of SOR (successive 

over-relaxation) iteration when   is taken as 1. There are many iterative 

methods some are related with these methods and others are different like 

Jacobin method, Jacobin over relaxation iteration method, Richardson 

iteration method, Conjugate Gradient iteration method…etc.  
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 Error Analysis of DQ Method: 

      Shu (1991) and Chen(1996) are introduce the error resulting from 

approximation a function and its derivatives.  

Error analysis for the function:       

        When approximate )(xu  by a polynomial of degree )1( N , 

particularly by the Lagrange interpolation polynomial 

                                     
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)()(                 ……………….(92) 

where )(xri is the Lagrange interpolation polynomial given by 
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Where  is the Legender polynomial of degree N , and )(xM defined as, 

          )())(()( 21 NxxxxxxxM                               ………(94) 

Thus, 

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N

ikk

ki xxxM
,1

)1( )()(  

The approximate error of  )(xu  is defined as, 

                                               uxuu N )()(                  ………..(95) 

If the Nthorder derivative of the function )(xu  is assumed to be a 

constant, say k , then )(xu  can be expressed as 
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Since equation(92) is exactly satisfied for a polynomial of degree less 

than or equal )1( N , we have  

                      1,,1,0,0)(  Nkx k               ………….(97) 

Substituting equation(96) into equation(95) and using equation(97), we 

obtain  
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On the other hand, substituting the polynomial of degree )1( N , 

)()( xMxxg N   into equation(95),we obtain  

       0)()()()(   xrxMxxMxg ii

N

i

N                …………….(99) 

Since, 0)( ixM , equation(99) can be further reduced to  
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                             )()( ii
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N xMxrxx               …………….(100) 

Finally, substituting equation (100) into equation (98), we get 
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In most cases, the Nth -order derivative of the function )(xu  is not a 

constant, but it may be boundad. In this case, we can adopt 

another method to analyze )(u . For simplicity, we set ux N)(  

and defined a function )(zU  as, 

                               )()()()( zMCzzuzU        ..………………(102) 

Clearly, when Nxxxz ,,, 21  , 0)( zU . 

If we set 0)( xU ,we obtain 

                     )()()()()( xMCzxuuxuu N     ……………..(103) 

Since )(zU  has 1N  roots Nxxx ,,, 21   in the domain, by repeated 

application of Roll's theorem, the Nth -order derivative of )(zU , 

)()( zU N is found to have at least one root lying between Nxandx1 . 

Denoting this root by  ,we have  

                                      0)()( NU                       ……………..(104) 

Not that, )(z is a polynomial of degree )1( N .so from equation(102), we 

obtain 
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Hence  
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In general   is a function of x . 

 

Error analysis for the derivatives: 

  The error for mth -order derivative approximation can be defined as 
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Where 1,,2,1  Nm . Using equation (106), equation(107) can be 

written as  
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Since   is an unknown function of x , it is difficult to estimate 

)()( um

D using equation(108).as a special case, if we assume that the Nth -

order derivative of )(xu is a constant, say k ,equation(108) can be 

simplified to  
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For the general case where )()( Nu  is not a constant, we can use a 

similar method as in the analysis of the function approximation 

to conduct error analysis of the derivative approximation.  

 Since )()()( zzuzg  has N  roots in the domain, according to Roll's 

theorem, its mth -order derivative )()( zg m  has at least )( mN   roots in 

the domain, namely Nxxx ,,, 21  . Thus, the function  
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where )())(()( 21 mNxzxzxzzM  ,would vanish mNxxx  ,,, 21 . 

Now if we set 0)()( xU m ,where x is different from mNxxx  ,,, 21 , then 

0)()( zU m has )1(  mN  roots ,and  

            )()()()( )()()( xMCxxuxu mmm

D                ………………(111) 

Using Roll's theorem repeatedly the thmN )(  -order derivative of )()( zU m  

is found to have at least one root . Thus equation(111) can be reduced to 
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Equation(112) can be used to estimate the error of the derivative 

approximation. It is assumed that all the coordinates are in the interval 

x ,and the Nth -order derivative of the function )(xu is bounded, then  

           Cu N )()(  , where C  is a positive constant, and    
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So, equation(109) and equation(112) can be simplified to 
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For the general case, the error distribution of the derivative 

approximation can also be studied using equation (108). The error 

distributions of the first-, second- , third- and fourth- order approximation 

have studied by Chen (1996). For the first-order derivative, equation 

(108) gives 
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Let  )(max )(

1 Nuk   and note that 0)( ixM . Applying equation (114) at 

that grid point ix  gives  
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  where
!
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i  , is the error distribution of the first order 

derivative approximation. For the second-order derivative  
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Where  )(,)(max )1()(

2   N

x

N uuk , and )()2(

ixe , is the error distribution 

of the second order derivative approximation. 


