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Numerical solution of partial differential equations

Numerical analysis is a branch of applied mathematics; the
subject can be standard with a good skill in basic concepts of
mathematics. This subject has many applications and wide uses in the
area of applied sciences such as, physics, engineering, Biological, ...ect.
So, when any body wants to study this subject, should be to get answers,
which do not agree with experiment or observation data. This is because
there always has to be careful choice of the mathematical model that is to
be used to describe a particular phenomenon. The problems of the real
subject of P.D.Es are possible great complexity involving many physical
effects (or other sciences) and a considerable set of non-linear equations.
These problems can not be solved either by advanced techniques or by
putting then on the computer. The techniques do not exist and the
machines are neither powerful enough nor sophisticated enough (to reject
spurious solutions). the problem only be omitting, after much careful
thought, perhaps and special case can be dealt with analytically , and this
will show what sort of calculation the machines must be programmed for
more general case. After determine the mathematical model for the
problems, should be try to solve it. For this situation, we need good
mathematical procedure to simplified or linearized problems, which are
non-linear or involving complex geometries, or both. Here the numerical
techniques such as finite difference, finite elements, differential
quadrature ,....ect;are play important role to computational of problems
are described by a set of linear and/or non-linear equations.

Important examples of the three type equations are the
u, +u, =0 Laplace equation
U, =U, Heat equation
U, =U,, Wave equation
Before derivation of finite difference formulas, which are using to
approximation partial differential equations, we wanted to introduce
classification of second order linear partial differential equations

Au, +Bu, +Cu, +Du, +Eu, +FU+G=0 ........coooiiiii, (1)

Where A, B,C,D,.E, F,and G are functions x and y
Now, If
<0 =  Elliptic P.D.E. u, +u, =0 Laplace equation

Yy
B® -4ACi=0 = Parabolic P.D.E. examples U, =U,, Heat equation
>0 = Hyperbolic P..D..E. U, =u Wave equation

XX



And, also we need to give information about uon the boundary (C) of R
(Fig(2)

- given uon C [Dirichlet problem]

- given Z—l; oncC, where nthe norm [Neuman problem]

- au +ﬂ2—lrj], where «, B are given, [Mixed problem]

Example 1:

One end of a bar 2ftlong .whose sides are insulated, is kept at the
temperature 0°C ,while the other end is kept at 10°C. If the initial
temperature distribution is linear along the bar, write down the boundary
value problem that governing the temperature in the bar.

The bar has the length 2ft (i.e. @=1[0,1]), then by conservation law of
energy ,we have

spAu, (X, 1)AX = KA[uX (X+ AX) —u, (X, t)]

Where the constant sis the specific heat of the material, p is the mass per
unit volume, and x, is between xand x + Ax,Kis the thermal conductivity
( positive constant), and Ais the area of a cross section . Dividing through
in this equation by spAAx and then letting Ax approach to zero, we obtain

the equation
u (X, t)Ax=au, (x,t) 0<x<2, t>0

Where a =K /spis the thermal diffusivity of material.
One end kept at the temperature 0°C and the other end is kept at 10°C

= u(0,t)=0 and u(2,t)=10 ,t>0

The initial temperature distribution is linear along the bar

= u(x,0)=5x ,0<x<2

Therefore, the mathematical model for this problem is
U =au,
u(0,t)=0 and u(2,t)=10 ,t>0
u(x,00=5x ,0<x<2
Example 2:
A string is stretched between the fixed points (0,0)and (1,0) and

released at rest from the position u= Asin(zx) ,where Ais a constant. Write



down the mathematical model that governing the transverse displacement
of a string.
The mathematical model for this problem is

U, = a’ U, (For derivation you can see Churchill R. 'Fourier sires and Boundary Value Problems'
page 5)

u(0,t)=0andu(Lt)=0,t>0(A string infixed at points (0,0) and (1,0) =>there is no
displacement)

u(x,0) = Asin(zx) ,0<x<1 (Initial displacement, at t =0 )

Depending on the above information, the following is a rough summary
of well-posed problems for second-order partial differential equations:

elliptic equation plus boundary conditions

parabolic equation  plus boundary conditions with respect to space
plus initial condition with respect to time

hyperbolic equation plus boundary conditions with respect to space

Finite difference methods

One of the greatest needs in applied mathematics is a general and
reasonably short method of solving partial differential equations by
numerical methods. Several methods have been proposed for meeting this
need, but none can be called entirely satisfactory. They are all long and
laborious. Certain types of boundary value problems can be solved by
replacing the differential equation by the corresponding difference
equation and then solving the latter by a process of iteration. This method
of solving partial differential equations was devise and first used by
Richardson (1910). It was later improved by Liebmann(1918) and further
improved more recently by Shortley &Weller (1938).the process is slow,
but gives good results on boundary value problems which satisfy Laplace
, Poisson, and several other partial differential equations. A strong point
in its favor is that an automatic sequence-controlled calculating machine
can do the computation.

A somewhat similar method is the relaxation method devised by
Southwell. This method is shorter and more flexible than the iteration
method, but is not adapted to automatic machine computation. In both of
these methods the approximate solution of a partial differential equations
with given boundary values, is found by finding the solution of the
corresponding partial differential equation.

Operators: it is a mathematical operation on an operated function.
- Shifts (translation) operator Ef (x) = f(x+h)
- Difference operator Af(x) = f(x+h)— f(x)
- Inverse difference operator Vf(x)= f(x)— f(x—h)
- Intermediate operator & f(x)= f(x+h/2)— f(x—h/2)



Properties of operators:

e Linearity of operator E(f +9)=E(f)+E(9)
e Product of operator E-E-Ef =E°f
e Sum and difference operator (E ¥ D) f(x) = Ef (x) ¥ Df (x)
e Equality of operator E,=E, ©Ef(X)=E,f(x)
e |dentity(unit) operator I f(x)=f(x)
e Null(zero) operator 0f(x)=0
Exercisel: Prove that (a) A=E-1
(b) E'D=DE"
(c) E=e™
Inverse operator: it is a mathematical operator that inverse the original
operation.

For example; Shifts operator is Ef (x) = f (x+h), the inverse of it is
E'f(x)=f(x—h) ((EE™=1)
Difference operatorA =E -1, the inverse of it is
V=1-E*
O s, = EY2 _E-Y2
(2) 8°=E +E*-2
(3) EY*-5/2-—u=0 where p=(EY?*+E™"?)/2
(4) (EM?-6,12)°-5714=1
Finite difference formulas:
Now, the area of integration R is covering by rectangular
meshes P, = P(iAx,nAt), are called mesh points. For a function u of a
u(x+ Ax) —u(x)
AX
guotient, whose limiting value is the derivative ofu(x) with respect to x

le.

oy ge. U(X+AX) —u(x) iy U(X+ AX) —u(x)
u(x)_|A|XrIJ ~ =Uu'(X) » ~
That is mean; a difference quotient approximates the derivative, the

approximation becoming closer as Axbecome small.

Show that

, 1s called difference

single variable, the familiar expression
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Suppose we like to solve the parabolic P.D.E.

M _ L(x,t,D,D?)u
ot
2
for examplea—uza—lzJ L=D?

Using Tayler's series expand u(xt+k) about (x,t)
k au(Xl’ n) k a U(X|’ n)

t+k : e 3
UOGEHK) = UOK, 8) o o o e ()
ko k2 0?
—( :Lat 2|¥+ ................. )u(xl’ n)
Using the finite difference code; u® =u(x,,t.)
u* = Exp(k —)u .............................. 4)
This is finite difference representation of the parabolic P.D.E.
2
As special case; let u_ 8_121 L=D’
ot ox
UM = Exp(KD?)U e (5)

=/(E)=/n(1+A) = ZKn{g + @1+ (g)z)“z} Prove that!

D= lsinh‘l (é) Prove that!
h 2
1 1 1
D=8, — 5= 8y 4= Op Hoeeeeeeeeeeeeeeenn | 6
h[ 2%t 2%t :l ©)
2
D2_h_12|: x_zé?’l53+2}5|§f+ ..................... :l
. P )
:—2 )(2——534-—5)?4_ .....................
h 12 90
k 1 1
U-n+1=EX _ 52__54+_56+ ..................... un
' p(hz{ *12% 90 " }) '
= Exp(ré'xz)ui” . Exp(__é‘;1 )ui” . Exp(L §f)ui” ..................
............... ®)
= 1+r52+ r__§4_|_ __+_§6 ............. un
= (( ;=% ( AT ),

where r =hk—2, in which k = At and h = Ax

This is the general finite difference representation of the parabolic P.D.E.
ou 0%

at ox?

Generally, there are two standard methods:-



** An explicit methods

** An implicit methods
Definition: An explicit method is one in which one unknown values in
the (n+1)" level are specifying in terms of known values in the (n)" level.
Definition: An implicit method is one in which two or more unknown
values in the(n+2)" level are specifying in terms of known values in the
(n)" level.
Now, an explicit method can be reducing from the above general finite
difference representation of the parabolic P.D.E., and may be writing as,

uin+l

u™=@-2ru’ +r@l, +u) (10)

i+1

=@+rsA)ul =u" +rsu’ =u’ +r@u’, —2u’ +u’,)

i+1

Unknown known

This expression is calling an explicit method involving four-point
formula.
Other an explicit form can be obtaining as,

uMt :%(2 ~5r+6r)u’ +g(2— 2r)(u’, +u’,) —%(1—6r)(ui"+2 +ul,) ... (11)

This expression is calling an explicit method involving Six-point formula.
An implicit formula of the parabolic P.D.E. can be deriving as follows;
The finite difference formula u* = Exp(kD*)u’

2
DZZ%{gf_i5f+i55+ ..................... } , |j)2z§_x2
h 12 90 h
@+2ru™ —r@ +um=u' (12)
2
This equation is call implicit formula of the parabolic P.D.E. 2—: :g—lj. It
X

2

Is suggest by O'Brien et.el , which approximate 272 in the (n+1)"time

level instead of the (n)" level.
Crank and Nicolson(1947) proposed a method is valid for all values of r.

2
They replaced ZTL: by means of its finite difference representations on the

(n+1)"time level and (n)"time level.

2

2
u™ = Exp(kD?)u" = Exp(kl:z) )Exp(k[z) ' (13)




kD? kD?
E N ‘n+1 — E
Xp( 5 M, xp( 5

EXp(—3 510" = Bxp( 67|

uy

reo, et reo, .
1__5)( + 5)( doreieea u'" = 1+_5X + 5)( e u;
2 (4)-(2) 2 (4)-(2)
(1—£5f}ui”+l = (l—£5fjui"
2 2
TH —%(ui”jll —2u™ +uM) =u +%(ui11 —-2u! +ul,)) ... (14)
This equation is call Crank-Nicolson implicit formula of the parabolic
2
pPDE M_9Y
ot ox

Exercise2: write down the following parabolic P.D.E. with variable
coefficients
ou o%u - )
(1) E:a(x)a— (Hint: putL=a(x)D?*)

X2
ou 0 ou
(2) E_&(a(x)&)
Note: we can approximate the derivatives (first-order &second-order) by
finite difference depend on the following definition

ou .. U(X+AXY)-u(X,y) ou u(x+Ax,y)-u(xy)
&zllm AX j&z AX
Ax—0

Thus, this derivative at point (i, j) can expression as follows,

u... —U. .
al B T8 eorward difference (15)
OX|; AX

u.—u. ..
e UiTYei o pacwarddifference e (16)
OX|; AX

u... —uU. ..
aup Ui Yiag Centraldifference ... a7
OX[; ; 2AX
From these relations the second derivative can written as follows
o%u o ,ou ou ou
| ==& =G -] ax
x|, OX Xy OXlij  OXlig;
2 u.,.—2u . +U .
al; ~ ) WL Centraldifference L. (18)
x| (AX)



We can derivation these formulas by using Taylor's theorem. Apply
Taylor's expand to the function u at x+ Ax and x—Ax, we obtain

Aau(x,t) | (A° 2'ulxt)

u(X+Ax,kK)=u(x,,t )+ ——1 2 7 — Ul 19
(A% K) =u(x, )+ SF e ST S (19)
2 2
u(x—Ax,k):u(xi,tn)—&au(x"t")+(AX) 0 U(X‘Z't”)+---- ...... (20)
il OX 2! OX
Use these relations to prove above formulas.
Discuss the truncation errors
From equation( 19) , we get
ou _uly-ul Ao (A)Tou
X AX A A @

U U o)
AX
This is the Forward finite difference scheme .it is of the first-order of Ax.
Similarly, From equation(20) , we have
a_u _uin _uin—l
- A +0(Ax) (22)
This is the Backward finite difference scheme .it is of the first-order of
AX
Subtracting (19) and (20), we obtain
8_u _ uin+1 — uin—l 2
- 2Ax +0((Ax)7) (23)
This is the Central finite difference scheme .it is of the second-order of
(Ax)?
Adding (19) and (20), we get
d%u ul, —2u?+u, )
=W R o [(Y B 24
N () +0((AX)7) (24)
This is the Central finite difference scheme .it is of the second-order of
(Ax)?

Derivative boundary conditions

ou o4

For solving parabolic P.D.E Fiateve subject to the initial and

boundary conditions
u(x,00= f(x) for 0<x<1  (where f(x)is known function)



ou(0,t) _

u fort>0
OX
M:—u for t>0
OX

by using explicit method, we obtain
uin+1 =(1- 2r)uin + r(uin+1 + uin—l)
For i=0=u)™"=@-2ru]+r(u, +u")
Here appear problem in the computation of the recurrence relation exactly
in the term u",. One of the treatments for this problem, one can used
central difference scheme (equation (23)) for the boundary condition
uO.1) _

ives
OX 9

u", =u; —2Axu,
Similarly, For i=M = uj* =@-2r)uy, +r(uy,,, +uy,_,), such that problem
IS appear in the term u’ ,,s0 by using the same previous way ,we have

m+1?
n

Upog =Uy g — 2AX Uy,
Exercise3:
A bar, with ends at x=0and x=a,with insulated ends, has an
initial
temperature distribution u(x,0) = f(x)
1) Write down the boundary value problem that corresponding to the
physical problem.
2) Approximate the P.D.E. resulting in part(1) by:

a- explicit method b-implicit method c-Crank-Nicolson
method.
Exercise4:
Derive the following expressions:
2 U, +U o —U U, C .
1) a”| o bit | T i i \which is second order
8x8y|i‘j 4(AxAY)
mixed
central difference with respect to xandy.
2)%“ zﬁ%y(-nu”+18ui,,.+1_9ui,j+2+2ui,j+3) , which is third order

ij
difference with respect to y.

Two-dimension P.D.E.
(1) the 2D heat equation in the (x, y,t) plane may be written as

ou o%u o4
E:y_ky ............... (25)




Here we can define the differential operator asL =D} + D} , thus,

equation
(25) can be written as
ou
—=Lu 26
=L (26)

Using the finite difference code; u; =u(x;,y;.t,), approximation of
equation (26) is
u/t = Exp(KL)u;,

i

— (Exp(KD?) - Exp(KD2) "

2 5)? 2 5;1 n
:(Exp(r(5x—E ----- ))~Exp(r(5y—E ~~~~~ MU (27)
= (Exp(rd;) - Exp(réy )y,
=(L+r85) A+ 1S

This is explicit scheme for 2D parabolic P.D.E.
(2) Using an explicit method to approximation the2D parabolic P.D.E.
ou 0 ou, 0 ou
P (a(x, y) &) + 5 (b(x,y) 5) ............ (28)

(3)Use an implicit scheme to approximation the 2D parabolic P.D.E.

Explicit method:
Advantage Relatively simple to set up and program
Disadvantage in terms of above example, for a given Ax,At must be
less than some limit imposed by stability constraints.
In some cases, At must be very small to maintain
stability; this can result in long computer running
times to make calculations over a given interval of t.

Implicit method:

Advantage  stability can be maintained overt much large values of At,
hence using considerable fewer time steps to make
calculations over a given interval of t. This result in
less computer time.

Disadvantage more complicated to set up and program
Disadvantage Since massive matrix manipulations are usually required
at each time step, the computer time per time step is

much larger than in the explicit approach.

Disadvantage Since large At can be taken, the truncation error is large,



and the use of implicit methods to follow the exact
transient (time variation of the independent variable)
may not be as accurate as an explicit approach.
However, for a time- dependent solution in which the
steady state is the desired result, this relative time wise
inaccuracy is not important.

Other finite difference approximation methods:

A weighted average approximation method:
we can introduce a weighted factor ¢ to some finite difference
scheme, such as Crank-Nicolson scheme to produce a more general finite
difference approximation to 8—u=@.
ot ox
b Ui _ 1
At (AX)?
If 6=0 then explicit scheme obtain (equ.(10))
0 =1 then fully implicit scheme obtain(equ.(12))

u

lowrs, —2uly +uld) + @- 00Ul —2ul +ul )] (29)

i+1, ]

0=%then Crank-Nicolson scheme obtain(equ.(14))

In practice 0<6<1.

Alternating direction implicit method (ADIM):
we consider the parabolic P.D.E.
2 2
%J:a((;(—l:+gy—l:) .............. (30)
Define over a rectangle region O<x<aandO<y<b,where «,ab are
constants, u(x,y,t) is known on the boundary of the rectangle.define the
coordinates (x,y,t) of mesh points as; x=iAx,y= jAy,t=nAt ,where

i,j,n are +ve. The implicit Crank-Nicolson finite difference of above
parabolic P.D.E. is
2 n+l
Ll =) | 31
At 2 (8x2 +8y2)i'j+(8x2 oy? i’j] Gl

This scheme produces (M —1)(N -1) simultaneous equations for each time

step.

However, the best method to solve these simultaneous equations is
2 2

replaced 2—2 by implicit difference approximation and Zy—lj by explicit
X

difference approximation in (n+1/2)time level, as

u o
+_

)

n
uirj}rq _uirjj _ 0{ o*u  d%u



n+l/2 _ on

Ui Ui a 2y, n+1/2 a 2y,,n
= S SHUMN 32
At/2 (AX)Z ( X)UI,J + (Ay)z ( y)u|,] ( )
2
These produce (N -1) equations. For next time step, replace ax—l: by an
2
explicit difference approximation and a—‘j by implicit difference

approximation. These produce (M -1) equations in (M -1) unknowns. To
obtain the solution at time step (n +1)

ui?}l_uiT}llz __a (52)uMv? ¢ o (52)um (33)
YT 07 & i (Ay)? P
Elliptic P.D.E.

Let the problem of determining the steady —state heat distribution in a
thin square metal plate with dimensions 0.5m by 0.5m .two adjacent
boundaries are held at 0°C ,and the heat on the other boundaries increases
linearly from 0°C at one corner to 100°C where the sides meet. If we place
the sides with the zero boundary conditions along the x- and y -axes,
the problem is expressed as

o’u  d%u
ooyt
for (x,y)eR={(x,y)|0<x<0.5,0<y<05}, with the boundary conditions

u(0,y) =0, u(x,0) =0, u(x,0.5) =200x, u(0.5, y) =200y .

If M =N =4, the problem has 5x5grid and the finite difference equation

0 (34)

4u, —(um’j FUy + U+ ui’H):O ............... (35)
For i=123 and j=123.
Expressing this in terms of relabeled interior grid points p,, p,, - Pe
corresponding to u,,u,, - u, implies that the equations at the points p,
are
for j =3,
1=l Mgty Tl Sty (36a)
1=2: 4u2,3 —Ugz —Uyj3 —Uy, =Uy,
i=3 4u3,3 —Upp, —Upz = Uy +Us,
for j =2,
=L Ay ey ety =t (36b)

1
I=2: 4u,, —U;, U, —U,;—U,, =0
3

Ag —Upg —Ugs —Ugy = Uy,



for j =1,
i=1: 4u, —u,, —U, =Uy, +U;, a6
=20 AUy —Ug, —U,—Up, =U,, T
I=3: 4Uy —U,; —Uy, =Ugy +Uy,

Where the right sides of the equations are obtained from the boundary
conditions. In fact, the boundary conditions imply that
Upg =Uyo =Uzg =Ugy =Ug, =Ugz = 0
Uy =Uy =25 Uy, =U,, =50 Uz, =U,3 =75
The linear system associated with this problem has the matrix form

AU=B i (37)
where

(4 -1 0 -1 0 0 0 0 O] Uy, | [257]

-1 4 -1 0 -1 T 50

0 -1 4 -1 0 -1 Uss 150

-1 0 0 4 -1 0 -1 Uy, 0

A=|0 -1 0 -1 4 -1 0 -1 ,U=|u,, |, B=| 0

O 0 -1 0 -1 4 0 0 -1 Uy, 50

0O 0 0 -1 0 0 4 -1 0 Uy, 0

O 0 0 0 -1 0 -1 4 -1 Uy, 0

0 0 0 0 0 -1 0 -1 4 U, | 25|

Exercise 5. Write the linear system of algebraic equations associated
with the problem of exercise 3 in the matrix form.

Note: the linear system of algebraic equations that is resulting from
approximation P.D.Es by finite difference method (finite difference
equations), needed good procedure to solve it. There are two procedures
to achieve this aim, the first is called direct methods( such as, Gauss
elimination , LU factorization,...... ) and the second is called iterative
method (such as;Jacobi iterative, Gauss-seidel iterative, successive over
relaxation(SOR) iterative ,........ ). For example, system (37) is solving by
using Gauss-siedel method and the results are;

I, ] (13 |23 B3 |1y |22 |32 |(1D |21 |(BI1
u, 1875 | 3750 | 56.25 | 1250 | 25.00 | 37.50 | 6.25 | 1250 | 18.75
u(x, y) = 400xy | 1875 | 37.50 | 56.25 | 12.50 | 25.00 | 37.50 | 6.25 | 1250 | 18.75

This mean the truncation error is zero at each step.




Accuracy of the finite difference equation of the numerical scheme:
Accuracy of finite difference schemes can be determined by
many ways such as , theoretically through the order of error of the finite
difference equation and experimentally through the measurements of
errors( L* norm, ....).
There is Richardson's approach to limit the order of accuracy of the finite
difference equation. In this method, we need to know the truncation error
of the difference equation.

Let u represents the solution of differential equation
And U represents the solution of finite difference equation
The discretization error is
U—U = AK+Bh? +CKk? + Dh* 4+ vovee L (38)
If we use k,,h as mesh size to produceu,, andk, ,h, as mesh size to
produce U, ,then

U—U, = Ak, +Bh? + CkZ + DO} +-cvooveeee (39)
U—U, = Ak, + Bh2 + CKZ + DN +-ovvvveenn (40)

Subtracting these two equations, we obtain

1 k.h? —k,h?
u zm(hgul—hfuz)+A—l 2 kl 2 1
If we neglect the term involving A , then
4=t SR, =, andk, =k, then
2 1

u =%(4U1 ~U,) the error is O(h*)

Definition: u—-U is the discitization error which be reduced by
decreasingh and k .

Definition: LetF,,(U) =0represent the finite difference equation at (i, j)"
mesh point, then F,;(U) is called local truncation error.

Definition: If N is a numerical solution of finite difference equation that
is produce from each calculation is carried up to a finite
number of decimal places. Thus, U —N is the global rounding
error.

Total error= discitization error+ global rounding error=u,; - N, ;.



High accurate formula (high order) for elliptic P.D.E. can be derived
by using more terms from the operators series. These formulas are useful
when the boundary in highly irregular.

For example: An elliptic P.D.E.(equation(34)) can be approximation by
central difference operators as;
1, 1
W(@ Ui | +W
For high accuracy, using the definition given by equation (7)

(55)ui,j =0

h_12|:§xz_%§:+ .......... :|u...+i|:52_i54+ .......... }ui.j =0

Now, for the first two terms, we have
1 1
{53 —Eaj}u” {55 _Ea;*}ui‘j S0 e @1)
The first term

{55 —%5;:|ui,j = (ui+1,j —2U; +Ui1,j)_é5x2(ui+1,1' —2U; +ui*1’i)

4 S) 4 1 1

=§ui+l,j _Eui,j +§ui—l,j _Eunz,j _Eui—z,j

Similarly for the second term
1 4 5 4 1 1
|:5; _Eé‘;i|ui,j = gui,jﬂ _Eui,j +§ui,j—l _Eui,j+2 _Eui,j—z
Now, equation (41) becomes

14 1
Ui ; =g{§(ui+1,j Uiy +Uija +ui,j—l)_ﬁ(ui+2,j Ui, Ui +ui,j—2)} ...(42)

This finite difference equation is called nine-point formula.

Exercise 6:
1) Determine the order of truncation error of equation(42) .
2) Show that the truncation error of the Laplace equation is
2 4 4
TE :h_ ﬂ+6_u)+ ........
12 ox*  oy*



Stability, Convergence and consistency:

After presented, how to approximate the derivatives that including in
P.D.E. to generate the finite difference schemes for its numerical
solution? Should be discussing the follow;

e Verity that these schemes are good approximation to the P.D.E.
( consistent).
o Verify that the schemes are stable or no.
e Show that the numerical solution converges to the solution of
P.D.E.
Let us to define
F..U)=b ... (43)

Is a finite scheme and,
Fu=b (45)

Is a partial differential equation. Now we need to light up some
definition related to the property of finite difference schemes, as
follows;
Definition: we say that a finite difference scheme (43) is consistent with
P.D.E.(45) of order (k,h) , if for any smooth function
Fu-F U=0(K"h®) ., (46)

To verify consistency expand u in Taylor series and make sure
equation (46) holds.

2
Example: If aa_Ltj = Z—lj+cu approximate by explicit finite difference
X
method, then
(1) show that the finite difference equation given as
u™ =(@L+crh® +r?s2)u’

,where r :%, in which k = At and h = Ax

(2) Show that difference equation and P.D.E. are consistent
with the truncation error
2 2 A4
TE:k_a_g_h_a_T+ ........................ :o(k1h2)
2 at® 12 ox
Solution: using forward finite difference approximation (15) for the first
order time derivative, and central finite difference
approximation(18)for the second order spatial derivative,

finite difference equation so obtained is
u™—u oyt —2u" +u”
=i U (43)
At (AXx)

Rearrangement this equation, we have




u™ =uf +%(u{‘+l —2u +Ul)) F At (44)

At

)? and using the definition of the central difference
X

If we put r=(

operator, then the finit difference equation becomes
u™ = @+cr(Ax)? +r’siuf
Expand each term in equation(44) ,we obtain
. Atou! (At o%u!  (At)® ou!
Uy +— + +
1 ot 20 at? 3 ot
; . Axou!  (AX)2 9%u!  (Ax)® o%u!
u'+r +— + S+ 3
n ox ARG 3 ox
n Axau/ N (Ax)? 0%u!  (Ax)* &%y]
L ax o 2 axr 3d axe
Rearrangement this equation to obtain

—-2u” +u +o-eem)+Cr(Ax)%u

2 2,,n 2 A4, n
6u_6_u_cu+(At) Ui (AX)" 0y 0

ot ox? 2 a2 12 ot

2 2,.n 2 4. .n
a—u—a—l:—cu-i-TE:O ,where TE:(At) c uzi _(®97 9 u4i EREETERERES
ot oOx 21 ot 12 0oXx

This equation of order O(k,h?).
Exercise7: Approximation P.D.E. in above example by implicit finite
difference method ,then find its order of error

Definition: For a function v=(........ Y VRV A VA VA yon the grid
with step size Ax:

1
normv =|v| = {Ax i|vm|2}2

m=—0

And for a function f on the real time

1
norm f :||f||:U_+:|f(x)|2dx}2
Definition: a finite one-step difference scheme (43) for a first order
P.D.E. is stable if there exist number k, >0 and h, >0 such
that for any for any T > Othere exist a constant C, such that
v'|<Cv°| ,For 0<nk<T.0<h<h,0<k<k,
Definition: The initial value problem for the first order P.D.E. is well-
posed, if for any time T >0, there exist C, such that any
solution u(x,t) satisfies
lu(x,t)]| < C; Ju(x,0)| for 0<t<T
Definition: A one-step finite difference scheme approximating a P.D.E. is




convergent if for any solution to the P.D.E., u(x,t) is approach
to numerical solution u(nh,mk) as h,k — 0
Note: A consistent finite difference scheme for a P.D.E. for which the
initial value problem well posed is convergent if it is stable.
Definition: Fourier transformation and inversion formula for u defined
in region Rgiven as;

N
S
1 —leA
ue0 =—=[ e™a(p) dp

Py (x) dx ;

For a grid functionv :( ......... RV VR VARV A ywith grid spacingAx

U(&) = \/_ Ze"mhfu AX;

wlh

Uy = J— [, e ™a)dg

From the Parseval condition
JuCal =g
= [ual

2 Iﬁ/h n
-zlh

Convergent:
The system of algebraic equations that is resulting from recurrence

relation of finite difference schemes, written as
U™ =MU"+C oo (45)

Let 4" be the solution of the finite difference system (45) with a
perturbed initial conditions;

0" =ME"+C oo (46)

Let e=0"-0"
From (45) and(46) ,we have
U(n+1) lﬁ(n+1) =M (U(n) _ﬁ(n))
=M =M™ = g™ =MMg@ (47)
If M" >0, as n—w,then €™ —0 (i.e. the system is convergent).

Definition: ifM" — 0, as n— o« ,then M is convergent.

Definition: Spectrum radius p(M) = max|4|, where 2, are the eigenvalues

of the matrixm .
Theorem: IfM is the matrix coefficients and p(M)is spectrum radius,

then|M| > p(M).
Proof : Suppose p(M)=max|4|= 4, then

MU = 4,0 = [Md] = [4d] , fa] =0



M=l e, (48)

Also, IMa|<[Mllla] (49)
From equations (48)&(49), we get:

Ml = |, el
Since |ju]#0 = |ju]|>0 , this implies that

M= 4] = p(M) m

Theorem: If|M| <1, then M is convergent.

Proof:
[ ] = am ]
[Mm 2 <M, Prove that!
From these relations, we get
M@ <m[™

If [M| <1, then [M|™ —0, asn — oo, this implies that

M — 0, as n— oo, from the previous definition ,we have
M is convergent u

Corollary: If [M|<1 for any norm then the iterative process for

a™* =ma" will converge for every u®.
Note: it is possible that for some norm that|M|>1, but M s still
convergent.

Theorem: If p(M)>1,then M is not convergent.
Proof:
Suppose p(M) = max|4;| = 4,, then

Ma = A0 , where 4, >0,0=0
From(47***), we have
M _MMgO
Let u=£©, then
W =Mg® =Mu = 4,0
M =M®g = A"g
Since 4, >0,u =0, then
|| =|4|u]l ,dose not approach to zero, as n— o, thus

M is not convergent

E(n)




Theorem: Necessary and sufficient condition form =0 be convergent iff
p(M)<1.

Stability of finite difference: the numerical calculation using finite
difference formula are done in digital calculators which have round off
error, each point calculated there will be error in the finite result which
differs from the exact finite difference formula. For stable solution, there
should be no large accumulation of round off error.

Von-Neumann (Fourier-series) method:
In each, mesh point (i,n) there will be round off errore’, the sum of

which
error the grid points could represent as,

M
E(x,t)=> el
i,n
M
= Z Aieﬁﬁ’xe"‘t , B,a arearbitrary phaseconstants.

where, e* : growth factor of error with time(amplification factor)
E(X,t) _ i Aieﬂﬁ(im)ea(nAt)
If suppose e*=¢ is an arbitrary real or complex number, where
a(At) =constant, then

M .
E(x,0) =2 Ae’ ¢

If¢ >1, theng™will increase with time(i.e. instability), therefore , the
require equation to gives the stability condition is

K<t (50)
Simplification: The propagation of error with time is taken for one mesh
point rather than the whole mesh
el =¥ M (error for single mesh point) ..........(51)

Theorem: The error term in each mesh point ¢" satisfies the same finite
difference formula used to calculate value of u at that mesh point.

Proof: For the explicit finite difference formula (equation (10))



0" = (1- 200 + 1@, +07,)

‘"*1—(1 2r)a; +r(; +ay)

0t = (L=-2r)dy + (U, +0.)
— g™ — AMGO
where A is (M xM ) bounded matrix, a®is initial value at t=0
Suppose we introduce an error g in initial calculation, we get
g = AMg© (Prove that)
Example: Find the stability condition for the explicit finite difference
formula.
The explicit finite difference formula is

=1-2r)u +r(ul, +ui,)
From the above theorem we get

T =@1-2r)g" +r(el,
Apply von Neumann analysis (equation (51)) for each term in above

equation, we obtain
erlﬂ(iAx)g(n+l) _ (1_ Zr)eﬁﬁ(iAx)g(n) n r(eﬂﬂ(i+1)Ax I eJ?lﬂ(i—l)AX)év(n)

+&/y)

Divided by e’ ¢®™ we have
£ =(@1-2r)+r(e ™ e V)
= (1-2r) + 2r cos SAX

¢ =1-4rsin’ %

From the stability condition ( 50), we have |§|=‘1—4rsm2 P <q ,and this

impliesto 0<r < % (give the details to illustrate that)

Exercise8: Find the stability condition for an explicit finite difference
formula that is used to approximation u, =u, +u,,.

Exercise9: Show that an explicit finite difference formula for

approximation is stable foro<r < %.
Exercisel0: Consider the finite difference equation

—2u" UMt = {(un+l 2uM + UMty + (UM —2umt }

i+1

(a) Find P.D.E. that Is consistent with FDE
(b) Find the stability condition.
Exercisell: (1) Approximate u, +vu, —au, =0 by ;
(a) Explicit method (b) Implicit method (c) Crank-Nicolson method

i+1



(2) Find the truncation error and stability regions for all above
finite difference methods.
(3) Approximating the first derivative in the P.D.E (part 1), by
using the weight gat two time levels, then, find the
truncation error and stability condition.

Matrix stability analysis:

Assuming periodic initial data and neglecting the boundary
conditions, we have used the von-Neumann method to determine the
stability of the difference schemes. We now apply the matrix method,
which automatically takes into account the boundary conditions of the
problem, to difference schemes for the stability analysis. The two level
difference scheme may be written as,

AT = AT™ +b", (52)

where b" contains boundary conditions and|A)|=0. ForA; =1, the

difference scheme(52) will be an explicit scheme otherwise an implicit
scheme. We now assume that an error is introduced by round-off or some
other source in to the solution a" and call ita™, then

AT = AT™ +b" (53)

Subtracting equation(52) from equation(53), we get

AE ™D =A™ (54)

where ™ =0"™ -a™is the numerical vector error. In the stability
analysis by the matrix method, we determine the condition under which
the value of the numerical error vector |z where

| - |denotes a suitable norm, remains bounded as n increases indefinitely,

with k remaining fixed.

The equation (54) can be written in the form
é*(le) — PE*(”)

U*(n) —U(n) ’

where P=A'A

It is simple to verify that £ =pz"®
Thus the stability condition in the matrix method depends on the
determination of a suitable estimate for|P|. When Pis symmetric or

similar to a symmetric matrix then |P|, is given by the spectral radius of
P. Now, if the eigenvalues 4, of P are distinct and the eigenvectors are
v® we can expand the vector



M-1
70 _ ZCiV (M
i=1

Then, we have
M-l _
é“ (n+1) — Zciﬂi(m—l)v (i)
i=1

Moreover, for the stability of difference scheme (52) we required each
14| <1 for alli.
Hence, we get the result that error will not increase exponentially with n
provided the eigenvalue with largest modulus has a modulus less than or
equal one or

[P, = max4] <1

It is easy to see that the eigenvalues are the zeros of the characteristic
equation

A= an|=0
For the explicit method, we have
A =1+rC, A =I
The eigenvalues and eigenvectors of C are giving by
2 =—4sin? 2 1<i<M -1 Prove that!
2M
v® =|:sin|_7[ sin2l—ﬂ singl_” ............... sinM:l
M M M M

It follows that the eigenvalues of 1+rCare
A =1-4sin? % 1<i<M -1
2M
Therefore, the condition for the stability of the explicit method is
—1<1-4rsin? % <1

Hence, 0<r s%. The result obtain, which is identical with that obtained

by application of the von-Neumann method.

Exercisel2: Use this method to determine the stability of the difference
equation that resulting in the previous exercise.

Gersschgorins theorem: The largest of the moduli of the eigenvalues of
a square matrix A can not exceed the largest sum of the moduli of
the elements along any row or any column.

|| <|sumof any row or any column|




Brours theorem: Let P, be the sum of the moduli of the elements along
the i"row excluding the diagonal elements a,. Then each eigenvalue of
A lies inside or on the boundary of at least one of the circles

|A—a;|<P, , where P, =radius a; =center.
For example ,from Crank-Nicolson formula ,we have

Bu™ =@1-B)a®™ (55)
a™ =@B* -nu®

[2+2r —r 0 0 0

-r 242r -r 0 0

0 -r 242r -r 0

Where, B=| 0 0 0
0

-r 2+2r —r
| 0 0 0 0 0 -r 2+2r]

If the eigenvalue of matrix Bis A, then for the system to be stable
‘%—431,@ the matrix B: maxP, =|-r|+|-r|=2r, a;=2+2r the Brours
theorem leads to 2<A<2+4r, give more details about this application.
Exercisel3: Then show that the equations (55) are unconditionally stable

for 2<2a.

Nonlinear parabolic equation:

The coefficients of the unknowns are functions of the
solution .we may solve these equations iteratively after being linearized
in some way.

Richtmyer’s linearization method:
Consider the P.D.E.

2,/m
6_u=6u2 , m>2
ot oX
Implicit weighted average difference scheme:-
Uina —Uin 1 2|,,m 2],,m *
‘ — = o, u’ ., [+ 1-6)o; |u.
At (AX)Z( x[ |,n+l] ( ) x[ |,n]) ( )




m m-1
=Uu;, + m- Ui, - (ui,n+1 _ui,n) e
Now, for simplicity we can write this equation as

u|n+1_u +m- U '(uin+1_uin)
So, u,, here is a function of Ilnear variable u; ., . Replace the unknown by a linear
approximation in u; ... Let w, = (u; .., —u; ) then
Ul = Ui +meufe - w

i,n+1 i

Substituting in (*), we obtain

W (4952[u +m-u’, Wi]+(1—l9)5xz [u{f“n])
At (Ax)?
= (Ai)z (m05>(2 [ljirj1n_l W ]+5x2 [uin,qn])
Using the definition of the operator 52, we obtain
VAVt (A%)? ( H[U Mo Wi =207 w U 'Wi+1]+[uinil,n —2u], +uinl1,n])
Which give the set of linear equations for the w, (whenm=2)
[1+4reu,, -2ré,, 0 0
-2réu,,, 1l+4ren,, -2réu;, 0
0 —-2réu,, 1+4réu,, -2réu,,
0 0
—-2reuy, _,, 1l+4reu, ,,
0 0 0 0 0 —-2rlly, ,,
[=2ru,,  ru,, 0 0 0 I uy, | [rug,
ra,, —2ru,, rug, 0 0 u,, 0
0 ra,, —2ru;, ru,, 0
= o0 0 0 +
0
MUy 5, —2My 5, MUy, [Uy_o, 0
i 0 0 0 0 0 MUy o, _ZrUM—l,n__uM—l,n_ [FUyn |

Exercise: use the Rrichtmyer's method to solve (*) withm=3.

Newton's method: By Taylor's expansion

f(x

n+1

(Xn+l_Xn) ’ (Xn+1_xn)2 "
)= f(Xn)+Tf (Xn)+Tf (X,)+---

o O O O o

—2rey, .,
l+4r6UM,1'n__




If f(x,,,) isthe solution of the equation f (x) =0, then

n+1

0= f(Xn)+(Xn+ll|_Xn) f'(Xn) = X, =X, - f(xn)

RN
Incase x; isavector J(x,)(X,,,—X,)=—f(X,).If X, X, =,
thenJ(x,)o =—-f(X,), where

Y
X, 0%, X,
I(x, = X, 0%, oX,
i, of,
| 0% OX, oX, |

V, Known approximation to u;, thus
u, =V, + o,
The nonlinear equation can be expressed as

f(u, Uy, SUy)=f(u;)=0 ,i,j=11)N
N equations in N unknownvar iables
u, arethesoluions

V, are approximat solutionto u,

of. of. of.
f. Y S GV )+ — o +—Lw, e + "o =0
I(\/l 2 N) |:aul 1 auz 2 6UN N

Example: solve (*) by using Newton linearization method.
By Crank-NicoIson method with m =2, we can approximate equation (*) as

l'Ii,n+
1At 2(Ax) ([u, L 'n+1 l+1n+1]+[u| -n —2U +U.+1n]) .......... (&)
AX)? _
Let ( _At) = P and denoteu, ., by u;. After rearrange equation (&) becomes

2

| 1—2(U + pU )+u|+1 {(ui—l,n _2( puln)+u|+ln)} 0
f (ui—l’ui’ui+1) =0
Apply Newton method with u; =V, we obtain

of; of; of;
fV Vi, V) +| — W, +—w, + W, =0
(V|—1 1) au. 1 GUM 11»_\[

Now,

N o, 2N +p)a +V, o, + {( =2V + pVy) +V.+1)}

{(uiz—l,n _2( puln)+u|+1n)} 0
Exercise: Write down the set of linear equations for @, in matrix form



Irregular boundaries:

When the boundary is curved and intersects the rectangular mesh at points. That
are not mesh point, then we cannot use the same formula, which we usually use:-
We want to find the finite difference approximations to the derivatives at a point such
as O close to the boundary curves figure .
Let the mesh be square and u is known on the curve and
Taylor series for u at point O can be written as follows

U, = A, +0(n*)
o,h
¢ V1ll P
O \ ¢
h
ou, 1,,0%,
U, =u, —h—2+>=h*~—2+0(h®
s =l TN N e TOM) 4
o o%u, . .
Elimination of v gives Figure-2- mesh square
X
v, 1 1 uA—l_gluo— % u; [+0(h%)
ox h|6@1+6) 0, 1+6,
2
8u20:i 2 0, 2 0 -2y |+om)
OX 6,1+6,) 1+6,
6 u,
2

Exercise: Approximate the elliptic equation u, +u, =-16.

Exercise 18: if the group of five points whose spacing is non-uniform

he, and hg, along x —axis, k&, and kg, along y —axis, arranged as in the

figure:
P2+

ke,

ho, he, |

! p(J T

Ps P

ke,
P+

(1) write the finite difference approximation for



Z—i at point p. by(FDS,BDS,and CDS)
(2) show that the approximation formula of
VZ2u(x,y) =0,can be written as
2 2
2) L b sy (b N N M U ohk) =0
h?|6,+6, 6, 6, 6,6, k0,0, k’6,+6,) 0, 6,
Note: we represent u, =u(x;,y;),u, =u(x, +hé,,y;),u; =u(x, —hé,,y;),

u, =u(x;,y; +k6,), and u, =u(x,y,; —ké,).

Differential quadrature method
Introduction:

In addition to finite difference method, finite elements method and
finite volume method there is an efficient discretization technique to
obtain accurate numerical solutions. In this technique wusing a
considerably small number of grid points(different point with FDM and
FEM),Bellman and his workers (1971, 1972) introduce the method of
differential quadrature(DQ) where a partial derivative of a function with
respect to a coordinate direction is expressed as a linear weighted sum of
all the functional values at mesh points along that direction.The DQ
method was initiated from the idea of the integral quadrature(1Q).the key
to DQ is to determine the weighting coefficients for the discretization of a
derivative of any order .

Bellman et al (1972) use Legendre polynomial to determine the
weighting coefficients of the first —order derivative, Civan(1989)
improved  Bellman  approach to  determine  the  weighting
coefficients,Quan and Zhang(1989) applied Lagrange interpolated
polynomials as test functions,so on.

Concepts and conclusions in DQ:

Differential quadrature method is a numerical method for solving
differential equations. It is differs from finite difference method and finite
elements method. The derivative along a direction is described into
weighting linear combination of functional values at the grid points in
differential quadrature method. Because all the information of functional
values at the grid points is used in differential quadrature method, it has
higher accuracy.

For convenience, we assumed that the function u(x)is sufficiently

smooth in the interval [0,1], shown in figure (1).



%

a »
b X

Figure 1- functions u over interval

b
The integral ju(x)dx represents the area under curve u(x).Thus evaluating

the integral is equivalent to the approximation of the area. In general, the

integral can be approximated by

b n

Iu(x)dx=wlu1+wzu2+ --------- WUy =D Wl e (64)

a k=1
Where, w,, W, -+« ,w_are the weighting coefficients, u,,u,, - ,u_are the
functional values at the discrete points a=x,,x,,---~,x, =b.equation(64)

is called integral quadrature, which uses all the functional values in the
whole integral domain to approximate an integral over a finite interval.
One of these types of integral Trapezoidal rule, Simpson's rule.

By introducing some grids points a=x <Xx,<...<x,=b in the
computational domain, Figure (2). The interval [01] is divided into sub-

intervals.

Figure 2- Computational domain stencils.
Assuming that the u, is a value of function u(x) at x=x, , then the first
and second derivatives of u(x) at the grid pointsx, is approximated by a
linear combination of all functional value as follows;
W)=Y COU, Vi=12, N eeeeeeeeeeeceeeeneeeeeeeens (65)

k=1 ik

W) 2D COU , Vi=L12m N eeeeeeeeeeeeeneeeeeeeens (66)

k=1 ik



where Cc’ and c®are the weighting coefficients, and N is the number

of grid points in the whole domain. Here the weighting coefficients are

different at different location points ofx.. Equations (65) and (66) are

called differential quadrature. In the application of the differential
quadrature formulae (65) and (66), the choice of grid points and the
determination of the weighting coefficients are two key factors. Once the
grid points are given the weighting coefficients can be determined by
using a set of test functions. There are many kinds of test functions that
can be used. For example, striz et al (1995) and Shu and xue (1997) used
Harmonic function, Shu (1999) used Fourier series expansion, and Guo
and Zhong (2004) used the spline function. The polynomial test
functions for determining the weighting coefficients are simply reviewed
below.

Determination of the weighting coefficients

The calculation of the differential quadrature coefficients can be
accomplished by several methods. In most of these methods, test

functions f,(x),I =1,2,...., N, can be chosen such that:

UO) 2D A0 eeeeeeeii (67)

where, ¢ are constants to be determined. However, if the differential
quadrature coefficients C{’ and C are chosen such that the equations
are represented as;

FO0 20 COR () o Vil =120, N eeieniereeeeeeneeenens (68)
£ 2 S0 COR(X) |, Vil =120 N eeeeeeeniecreeeeenens (69)

A relationship between first- and second- order coefficients can be
obtained as:

B =20 COS COf () =D D" COCHF (%) verrrreeerrunn (70)
Thus,



c?=3" cOc®, vik=12,..N,

in matrix notation:

I T 1)
where
¢ cf .. i c? c¢? .. R
c®]- e cf) .. o o] c? ¢ ... cs
fald  laeoa

Equation (71) implies that the values of C!? can be determined by two

alternative (but equivalent) procedures, i.e. they can be obtained by
directly solving equation (69) or by squaring the first —order matrix

[c®].One approach for calculating the entries of[c®] and [c®] (

Mingle, 1977; Civan and Sliepcevich, 1984; Naadimuthu et al, 1984,
Bellman and Roth, 1986) is to use the test functions:

G D G N U || (72)

If the polynomials are taken as the test functions, the weighting

coefficients (C and c?) satisfy the following linear systems

Where

a =[CY,CY....CT" , b =[CP,C ... CPT", Z =[L X, X" ]"

1 1 1 . 1

X, X, Xy e Xy

— 2 2 2 2

V=l x2 xX xX .. x>
ot o) XN

Here V is called Vandrmonde matrix, which is not singular and

n k-1

det(V ) =T [(x —x;)=0

k=2 j=1



Although the weighting coefficients can be determined by solving the
linear system (37), the matrix V is highly —ill conditioned as N is large.
In order to overcome this difficulty the Legendre interpolation
polynomial are used by Bellman et al (1972).the formulations of the

weighting coefficients are givens as follows

M _ LY (x)
ik —
(X=X )LY (%)
B D (75)
" 2x (% - 1)

where L, (x)and LY (x) are the Legendre polynomial of degree N and its

first order derivative respectively.

Although we can determine the weighting coefficients for the second
order derivatives by solving a system (74), the matrices are also highly-
ill-conditioned. By using the Lagrange interpolation polynomials as the
test function the weighting coefficients of second order derivatives are

given by Quan and Chang as follows

2 R N 1 .
cl? = 4k Jfor i £2K  veeveeiiiiiieneee. 76
XX (l—ll,;[i,k X =X ](j—l,j:&i,k Xi =X ] (76)
@ _ N-1 1 N 1
T Y E— ™

The recurrence formula to compute the weighting coefficients for mth

order derivatives are given by Shu’s as follows

(m-1)
cim=m clcim __ G Jfor i,k=22,.N;2<m<N-1.......... (78)
(Xi o Xk)
N m m N m
G =0 01 CP =3 " Cl¥ et (79)



In similarly way with equation (71), a relationship between first- and
high- order coefficients can be obtained,

c™] =[c®] -[cm] =[c] [c®], m=23..N=-1 ..uuu..... (80)

This equation indicates that the weighting coefficients for the high order
derivative can be computed by the matrix multiplication of the weighting
coefficients of the first order derivative. However, this equation is simple
and involves more arithmetic operations as compared to equations (78
and 79). We noted that the calculation of weighting coefficient by
equation (80) involves N multiplications and (N -1) additions, i.e., a
total of (2N -1) arithmetic operations. Recurrence relationship (78) only
involves two multiplications, one division, and one subtraction, i.e. a total
of four arithmetic operations for calculation of each off-diagonal
weighting coefficient, which is independent of the number of grid
pointsN. The calculation of each diagonal weighting coefficient from
equation (79) involves (N -1) subtractions. Thus, the number of
arithmetic operations for equation (78) and equation (79) is substantially

smaller than what is in equation (80).

Sample of typical grid distributions

Because the described equations obtained by using differential
quadrature method are equivalent to one obtained by using quasi-
spectrum method, the choice of grid points have a great effect upon
accuracy of results. There are two kinds of methods for choosing the
mesh points.

The uniform grid points are used in the first kind as follows:
Type (1): By a uniform grid, we mean that the grid has the same sizes.
Thus by

SEtting  AX =X, = X, =X, = Xy = Xy = Xy_gsserereees ect.



The coordinates of the grid points are chosen as

X; =(b—a)';1 for i=12,..,N and x e[a,b].
The zeros of orthogonal polynomials such as Chebyshev polynomials are
taken as grid points in the second kind as follows:

Type (1) : For this kind, the coordinates of the grid points are chosen as

5% such that r= cos(izr)
ry—n N-1

_b-a
b2
In this field, there are some contribution studies about the effect of
grid spacing distribution on the numerical results that were obtained by
DQ method. Quan and Chang (1989) compared numerically the
performances of the often-used non-uniform meshes and concluded that
the grid points originated from the Chebyshev polynomials of the first
kind is optimum in all cases examined. Bert and Malik (1996) indicated
an important fact that the preferred type of grid points changes with
problems of interest and recommended the use of Chebyshev-Gauss-
Lobatto grid for structural mechanics computations. Maradi and Taheri
(1998) also investigated the effect of various spacing schemes on the
accuracy of DQ results for buckling application of composites. They
provided insights into the influence of a number of sampling points in
conjunctions with various spacing schemes. Chen (1997) and Bert and
malik (1996) have provided sensible explanations why a certain type of
grid points is superior to the others in the computation of their problems.
The details of properties of DQ weighting coefficient matrices for the
determination and rank are given by Shu (2000), and we note from this
reference that these properties can be derived from the matrices properties

in algebraic subject.



Exercise: if weighting coefficients are desired for arange 0<x <1, then

calculate the weighting coefficients matrices C’ and C{? for N =3,4,5

grid points divided the above range.

Numerical methods to solve DO resultant equations

It is very important to make simple review about the solution
techniques, which are used to update the DQ resultant for the differential
equations. In most applications of the DQ method to engineering and
physics problems, which are governed by the partial differential
equations, considering the second —order partial differential equation as

follows:

In general, Equation (81) should be specified with proper initial and
boundary conditions for the solution to a specific problem. By DQ
method at all interior points of whole domain, the original problem,
which is defined in equation (81) can be reduced

to a set of N ordinary differential equations(ODES) as

du((;t ) - = £(tx,u(t ), 3 COuE %), CPu(t, X)) for i =12,..., N .(82)
When ou(t.x )—O, we can be able to obtain a system of linear algebraic

equations. The solution of partial differential equations may not be
possible to express in closed-form. Therefore, this solution function can
be approximated by polynomial approximation. Rearranging equation

(82) to obtain a set of ordinary differential equations as;

diu
%+ I R (83)
where {u}is a vector representing a set of unknown functional values at

all interior points, L, {u} is a vector resulting from DQ discretization, {G}

IS a vector arising from the given initial and boundary conditions. For



time-dependent problems, equation (83) constitutes standard form
ordinary differential equations. The time derivative can be approximated
by explicit or implicit low order finite difference scheme. From equation

(83), we can obtain a system of algebraic equations in the form

[HI U} ={G} oo (84)

where {u}is a vector of unknown functional values at all the interior grid
points given by

{u}: (uz,z’uz,s ------- Upm-1:Uz s Uggseens Usmogreesees Un_120Unoggees uNfl,Mfl')Tr

and {G} is a known vector given by

{G}: (GZ,Z'GZ,3 ------- GZ,M—l'G3,2'G3,S ------- G3,M—l --------- GN—l,Z’GN—1,3 ------- GN—l,M—l’)Tr
The dimension of the matrix [H] is (N—-2)(M -2) by (N-2)(M -2).
Equation (84) can be written alternatively as

this equation is called Lyapunov matrix form and [C][D]are matrices of
weighting coefficients for the first and the second-order derivatives have
the dimension (N-2)(N-2),(M -2)(M —2) respectively. One can see
that the dimensions of [C] and [D]are very small compared with the
dimensions of [H]. To solve this system that is discritized by DQ method,
one can adopt direct method or iterative method. To solve the ordinary
differential equations that are given in equation (83 or 84), there are
different explicit numerical schemes that are used to discritize these
equations and compute the results, for example: Euler forward explicit
scheme; this is the first order scheme given by

T L\ S SN (86)

The solution techniques that we thought could be possibly used to solve
the algebraic equations that are because of employing DQ method in
governing equations are divided into two parts. The first part is named

direct methods, and the second one is iterative methods.



Direct methods

To solve algebraic equations included in equation (84), there are
many standard methods, amongst of them, Gaussian elimination method,
LU decomposition approach are used extensively. The details of these
methods can be found in textbook of numerical analysis. These methods
are very efficient when the dimension of the matrix is not large. However,
when the number of grid points increases the dimension of the matrix will
increase accordingly. Hence the problem of virtual storage will become

critical;

furthermore, the DQ discretization matrix tends to become ill-conditioned
when the mesh size is large. This would lead to difficulties in obtaining
the solution or even worse, reduce the accuracy of the solutions. The
drawbacks of direct methods can be eliminated by using iterative
methods. Some of these iterative methods have been used to solve the

system of algebraic equations given in form of equation (84).

Iterative methods

If the matrix[H] in equation (84) is composed of two matrices[A]
and [P], then we can write it as
[HIZ[A]F[P] ceeeeeeeiiiei e eeen, (87)

by rewriting equation (84) in terms of matrices [A] and [P], we obtain

[A] U} = {G}—[P]- {u} ceeeeeneeieiiiiereec e (88)

The iterative expression for equation (88) can be written as



where n represents iterative level and the right side sometimes is called
the vector of the residuals. In practical applications, a relaxation factor ®
is introduced on the right hand side of equation (89), and the final

iteration expression becomes

T T . e Ll (90)

such that

R" = {G}-[H]-lu"}
Equation (90) is a general iterative expression for equation (84). By using
different forms of [A], we can obtain different iterative expressions for
equation (84). For the

stability and convergence of iterative method the reader may consult the
textbooks Smith (1978) and Rao (2002).

Successive over-relaxation (SOR) iteration method: SOR iteration is

used to improve the convergence speed of Jacobi method. It is noted that

SOR is a point iteration method. The value of u™* can be evaluated, when
the values of u* k=12,...,i-1 is calculated. These new values at the

iteration level (n+1) can then be used to compute the residuals. The

residuals of SOR iteration are computed from

R} = G} ~[H, Jum | ([Ho ]+ [H, D"}

where [H,] is the lower triangular matrix with diagonal elements being
zero, [H, ] is the upper triangular matrix with diagonal elements being
zero, and [H,] is the diagonal matrix with elements being the diagonal

elements of [H]. It is noted that the elements of



[H.],[H,], and [H,] are equal to those of [H] at the corresponding

positions, that is

[HI=[H ]+ [Hy ]+ [Ho ]

The iterative expression of SOR method is the same as the following

equation

n
un+l :uﬂ +®_|
a;

the R" in the SOR method can be expressed as
n i-1 n+l M n
RI =G - X aui™ =3 au;

SOR iterative methods for the Lyapunov system (2.20) to update the
solution can be write as

S ( i1 N
n+l _ ,,n n+l n
s C.+D. Gij _Zk=lc”<ukj _Zk=icikukj -

ii ii
i1 n+ M n
Dy’ —Zk:j Djkuik) ..................... (91)
with the residuals relation in the form

R] =le] -fe T o] -deo] +Ie D] -] ] -] (@] +[Du 1)

where the matrices C’s and D’s are having the same defined matrices of
H’s, which are mentioned above.

Gauss-seidel iteration_method: it is special case of SOR (successive

over-relaxation) iteration when © is taken as 1. There are many iterative
methods some are related with these methods and others are different like
Jacobin method, Jacobin over relaxation iteration method, Richardson

iteration method, Conjugate Gradient iteration method...etc.



Error Analysis of DO Method:
Shu (1991) and Chen(1996) are introduce the error resulting from
approximation a function and its derivatives.
Error analysis for the function:
When approximate u(x) by a polynomial of degree (N -1),
particularly by the Lagrange interpolation polynomial

Pu= iu(xi) LX) (92)
where r (x)is the Lagrange inferpolation polynomial given by
I (x) = x <7 k=12-0ennn. 'N
_ 46k 12,
r () = x=x) () k=12, N
¥ ():) ......... (93)
I, (x) = (X_Xk) Y (Nl) ) k=12-------- N
r-k (X) :1’ I’-k (X) = (X_Xk—l)'rk—l(x)’ ’k :112! """"" ' N
Where ris the Legender polynomial of degree N, and M (x) defined as,
M(X) — (X—Xl)(X—XZ) .......... (X_XN ......... (94)

Thus, M@ (x) = ﬁ(xi—xk)

k=1,k=i
The approximate error of u(x) is defined as,
Eu)=u(x)-P,u ... (95)
If the Nthorder derivative of the function u(x) is assumed to be a
constant, sayk, then u(x) can be expressed as

U(X) =My + M XA+ M, XA eeeeeeees X T (96)

Since equation(92) is exactly satisfied for a polynomial of degree less
than or equal (N -1), we have

E(X)=0, k=01 eeeeem N-1 (97)
Substituting equation(96) into equation(95) and using equation(97), we
obtain

B(u) = k % ............... (98)
where E(x")=x" - _N X" -1.(X)

On the other hand, substituting the polynomial of degree(N-1),
g(x) =x" =M (x) into equation(95),we obtain

E(@) =x"-M)-Y [ -Me)]reo=0 (99)

Since, M(x,) =0, equation(99) can be further reduced to



X)) =M(X) (100)

Finally, substituting equation (100) into equation (98), we get

Eu) =X '\ﬁll(xi) ................ (101)
In most cases, the Nth-order derivative of the function u(x) is not a
constant, but it may be boundad. In this case, we can adopt

another method to analyze Eu). For simplicity, we set 4(x)=P,u
and defined a function u(z) as,

U@)=u(@)=¢(2)—=C-M(2)  coerviiiieiinnn.. (102)
Clearly, when z =x,,X,, -+~ Xy, U(2)=0.
If we set U(x) =0,we obtain
EU)=u(x)=Pu=u(X)—¢(2) =C-M(X) .evvrrrrrrran.n. (103)
Since U(z) has N+1 roots x,,x,,------ ,Xy In the domain, by repeated

application of Roll's theorem, theNth-order derivative of u(z),
U™ (z)is found to have at least one root lying between x, and x, .

Denoting this root by &,we have
u®Ee =0 (104)
Not that, #(z)is a polynomial of degree (N -1).so from equation(102), we

obtain
(N)
o “Tff) .................. (105)
Hence
E(U) _ u(N) (5) ‘M (X)
N!
In general ¢ is a function of x.

Error analysis for the derivatives:
The error for mth-order derivative approximation can be defined as
o"u 0" (Pyu) _ 0" _0"¢

EPUW=—-— N = — = (107)
oo™ oo™ oo™ oo
Where m=12,----- ,N -1. Using equation (106), equation(107) can be
written as [ ]
m gy O U™ (&) -M(X)
EM(u) = Lo e (108)

Since ¢ is an unknown function of x, it is difficult to estimate
E{ (u)using equation(108).as a special case, if we assume that the Nth-
order derivative of u(x)is a constant, say k,equation(108) can be
simplified to



MM [y
Eg(u(xi)):w .................. (109)

For the general case where u™(¢) IS not a constant, we can use a
similar method as in the analysis of the function approximation
to conduct error analysis of the derivative approximation.
Since g(z) =u(z)—¢(z) has N roots in the domain, according to Roll's
theorem, its mth-order derivative g™ (z) has at least (N —m) roots in
the domain, namely x,,%,,----- -~ , X, - Thus, the function

U™ (z)=9™(2)-C-M(z2)

QT (110)
where M(z)=(z-%X)(@Z—X,) -~ (z—X,_,),would vanish x,x,, -~ Ko
Now if we set U™ (x) =0,where xis different from x,x,,-----~ Xy m» then
U™ (z)=0has (N -m+1) roots ,and

EPUE)]=u™®)-¢™®) =C-M(X)  rrrrrrrinnnnns (111)

Using Roll's theorem repeatedly the (N — m)th-order derivative of U™ (2)
is found to have at least one root & . Thus equation(111) can be reduced to
N (EY. M (%

E™[u(x)] =" (I(\Ifi'm'\g!(x) .................. (112)
Equation(112) can be used to estimate the error of the derivative
approximation. It is assumed that all the coordinates are in the interval
Ax,and the Nth-order derivative of the function u(x) is bounded, then

u™ (&) <C, whereC is a positive constant, and
MM ()| < N(N =1) (N =m+ 1) (Ax)"
M (%)] < (Ax)" "
So, equation(109) and equation(112) can be simplified to

e fugo] - SO0

For the general case, the error distribution of the derivative
approximation can also be studied using equation (108). The error
distributions of the first-, second- , third- and fourth- order approximation
have studied by Chen (1996). For the first-order derivative, equation
(108) gives
(N+1) . . (N) M@

B0 ()= 4 (©) & 'V'(Xz“*“ €M7 (114)

Let k, :maxﬂu““)(g)\} and note thatM(x,)=0. Applying equation (114) at

that grid point x; gives




ES[u(x)]= U(N)(g)NI:A o) <ke®(x) ,for i=12.----N ... (115)

(Y] -
wheree“’(xi):MT('Xi), is the error distribution of the first order

derivative approximation. For the second-order derivative

(N+1) . . (N) M@
0T (e) ey M(L)IN (€)-M (X)Skze(z)(x) ......... (117)
Where k, =max{u(”>(§)\, fxu(”*l)(g)\}, and e (x.), iIs the error distribution

of the second order derivative approximation.

B9 (1) =




